[1] Escobar C, Barcala M, Cabrera J, et al. Overview of root-knot nematodes and giant cells[J]. Advances in Botanical Research, 2015, 73: 1-32. [2] 金娜, 陈永攀, 刘倩, 等. 我国蔬菜根结线虫发生、致害和绿色防控研究进展[J]. 植物保护学报, 2022, 49(1): 424-438. [3] Saidova S, Eshova H, Mirzaliyeva G, et al. Distribution of root-knot nematodes on agricultural plants, harm and their host plants[J]. Bulletin of National University of Uzbekistan[J]. Mathematics and Natural Sciences,2020, 3(3): 375-387. [4] Tapia-Vázquez I, Montoya-Martínez A C, De los Santos-Villalobos S, et al. Root-knot nematodes (Meloidogyne spp.) a threat to agriculture in Mexico: Biology, current control strategies, and perspectives[J]. World Journal of Microbiology and Biotechnology, 2022, 38(2): 26. [5] Shilpa P, Thakur V, Sharma A, et al. A status-quo review on management of root knot nematode in tomato[J]. The Journal of Horticultural Science and Biotechnology, 2022, 97(4): 403-416. [6] 王秋霞, 颜冬冬, 王献礼, 等. 土壤熏蒸剂研究进展[J]. 植物保护学报, 2017, 44(4): 529-543. [7] 李青杰, 方文生, 颜冬冬, 等. 熏蒸剂对土壤微生物的影响研究进展[J]. 农药学学报, 2019, 21(Z1): 780-786. [8] 袁会珠, 齐淑华. 溴甲烷土壤熏蒸防治春季大棚黄瓜土传病害[J]. 植物保护, 1997, 23(5): 42-43. [9] 陈永利, 张金波, 陈宪, 等. 土壤熏蒸剂氯化苦研究进展[J]. 辽宁化工, 2018, 47(5): 425-426. [10] Nagami H, Suenaga T. Health effects caused by soil fumigant chloropicrin, reduction of exposure to chloropicrin, and alternative technology of soil fumigants[J]. Journal of Uoeh, 2022, 44(4): 395-404. [11] Eno C F, Blue W G, Good Jr J M. The effect of anhydrous ammonia on nematodes, fungi, bacteria, and nitrification in some Florida soils[J]. Soil Science Society of America Journal, 1955, 19(1): 55-58. [12] Su L, Ruan Y, Yang X, et al. Suppression on plant-parasitic nematodes using a soil fumigation strategy based on ammonium bicarbonate and its effects on the nematode community[J]. Scientific Reports, 2015, 5(1): 17597-17611. [13] 邢诒宥, 陈美兰. 氨水消毒土壤防治茶苗根结线虫病的研究[J]. 中国茶叶, 1984(3): 38-39. [14] Bashour I, Alameddine A, Wehbe L, et al. The use of aqua ammonia for the control of soil borne diseases in tomato[J]. Lebanese Science Journal, 2013, 1(14): 41-47. [15] Oka Y, Pivonia S. Use of ammonia-releasing compounds for control of the root-knot nematode Meloidogyne javanica[J]. Nematology, 2002, 4(1): 65-71. [16] 左强, 武凤霞, 张淑彬, 等. 不同氮素对根结线虫及土壤微生物的影响[J]. 植物保护, 2022, 48(3): 329-376. [17] 毛小芳, 李辉信, 陈小云, 等. 土壤线虫三种分离方法效率比较[J]. 生态学杂志, 2004, 23(3): 149-151. [18] 李钰飞, 许俊香, 孙钦平, 等. 沼渣施用对土壤线虫群落结构的影响[J]. 中国农业大学学报, 2017, 22(8): 64-73. [19] 陈娟妮, 蔡璘, 李石力, 等. 纳米技术在植物病害防控中应用的研究进展[J]. 植物保护学报, 2019, 46(1): 142-150. [20] Caporaso J G, Kuczynski J, Stombaugh J, et al. QIIME allows analysis of high-throughput community sequencing data[J]. Nature Methods, 2010, 7(5): 335-336. [21] 黄玉芳, 叶优良, 杨素勤. 双波长分光光度法测定土壤硝态氮的可行性研究[J]. 中国农学通报, 2009, 25(2): 43-45. [22] 端爱玲, 韩张雄, 黄艳, 等. 靛酚蓝比色法测定土壤中铵态氮注意事项[J]. 当代化工, 2021, 50(12): 2861-2864. [23] Byrns G, Fuller T P. The risks and benefits of chemical fumigation in the health care environment[J]. Journal of Occupational and Environmental Hygiene, 2011, 8(2): 104-112. [24] Karajeh R, Al-Nasir F, Field utilization of nitrogen fertilizers for controlling root-knot nematode and improving growth and yield of cucumber[J]. International Journal of Agriculture and Forestry, 2014, 4(1): 34-40. [25] 马桂妹, 谭涛, 杨东, 等. 云南江城雪茄烟根结线虫病的病原鉴定及生物源氨气熏蒸的防治效果研究[J]. 云南大学学报(自然科学版), 2023, 45(1): 211-217. [26] Shakeel A, Abrar A, Aashaq H, et al. Nitrogen fertilizer alleviates root-knot nematode stress in beetroot by suppressing the pathogen while modulating the antioxidant defense system and cell viability of the host[J]. Physiological and molecular plant pathology, 2022(120): 101838. [27] Shakeel A, Khan A, Hakeem K. Growth, biochemical, and antioxidant response of beetroot (Beta vulgaris L. ) grown in ffy ash-amended soil[J]. SN Applied Sciences, 2020, 2: 1378. [28] Sperling O, Karunakaran R, Erel R, et al. Excessive nitrogen impairs hydraulics, limits photosynthesis, and alters the metabolic composition of almond trees [J]. Plant Physiology and Biochemistry, 2019, 143: 265-274. [29] 吴晓明, 徐文仙, 张树生. 液氨熏蒸土壤防控灵芝连作障碍的效果[J]. 食药用菌, 2018, 26(5): 322-324. [30] Olivier C, Macneil C, Loria R, Application of organic and inorganic salts to field-grown potato tuber scan suppresssilve rscurf during potato storage[J]. Plant Disease, 1999, 83(9): 814-818. [31] 张停林, 王桂英, 杨军峰, 等. 碳酸氢铵熏蒸防治十字花科蔬菜根肿病效果[J]. 长江蔬菜, 2019(22): 76-80. [32] Ren T, Xue Y, Miao T, et al. Manure increases temperature sensitivity of soil organic carbon by increasing soil alphaproteobacteria, phenols, and pH and decreasing soil esters[J]. Journal of Integrative Agriculture, 2025. https: //doi. org/10. 1016/j. jia. 2025. 09. 021. [33] Fumasoli A, Bürgmann H, Weissbrodt D, et al. Growth of nitrosococcus-related ammonia oxidizing bacteria coincides with extremely low pH values in wastewater with high ammonia content[J]. Environmental Science and Technology, 2017, 51(12): 6857-6866. [34] Liu Z, Shan X, Zhao D, et al. Evaluate the partial nitrification/anammox biofilm system treating the anaerobic biogas slurry of multisource organic solid waste [J]. Journal of Water Process Engineering, 2024, 57: 104623. [35] Sun X, Xia R, Xie J, et al. Cooperative interactions between Bacillus and Lysobacter enhance consortium stability and Fusarium Wilt suppression in cucumber[J]. Research Square, 2025: 88(1): 92. [36] Manici L, Caputo F, Sabata De, et al. The enzyme patterns of Ascomycota and Basidiomycota fungi reveal their different functions in soil[J]. Applied Soil Ecology, 2024, 196: 105323.. [37] Qiao S, Xu S, Li Z, et al. Physicochemical properties and fungal communities of forest soil combine to influence ginseng rusty root grade[J]. Rhizosphere, 2025, 33: 101050. [38] Midgley D, Letcher P, McGee P, et al. Access to organic and insoluble sources of phosphorus varies among soil Chytridiomycota[J]. Archives of Microbiology, 2006, 186(3): 211-217. [39] Gai X, Zhong Z, Zhang X, et al. Effects of chicken farming on soil organic carbon fractions and fungal communities in a Lei bamboo (Phyllostachys praecox) forest in subtropical China[J]. Forest Ecology and Management, 2021, 479: 118603. |