[1] 李琳, 刘薇, 张倩倩, 等. 设施蔬菜根结线虫的综合防治研究进展[J]. 黑龙江农业科学, 2024(11): 114-120. [2] 文廷刚, 刘凤淮, 杜小凤, 等. 根结线虫病发生与防治研究进展[J]. 安徽农学通报, 2008(9): 183-184, 75. [3] 金娜, 刘倩, 简恒. 植物寄生线虫生物防治研究新进展[J]. 中国生物防治学报, 2015, 31(5): 789-800. [4] 刘丹, 宋东宝, 曹坳程, 等. 氯化苦与阿维菌素混用对南方根结线虫的室内活性评价[J]. 农药, 2013, 52(12): 926-929. [5] 宋展树, 李金章, 白欣可, 等. 生物药剂结合生物有机肥处理防治日光温室香瓜根结线虫病的效果研究[J]. 中国瓜菜, 2022, 35(8): 92-96. [6] 张彩虹, 于秀针, 姜鲁艳, 等. 基质高温热水消毒戈壁日光温室番茄生长及对青枯病的防治效果[J]. 新疆农业科学, 2016, 53(8): 1481-1486. [7] 刘静怡, 王鑫, 李园, 等. 熏蒸剂作用机制研究进展[J]. 现代农药, 2024, 23(1): 1-7. [8] 曹坳程, 方文生, 李园, 等. 我国土壤熏蒸消毒60年回顾[J]. 植物保护学报, 2022, 49(1): 325-335. [9] 方文生, 曹坳程, 韩大伟, 等. 两种熏蒸剂对土传病害的防控效果及黄瓜产量的影响[J]. 中国蔬菜, 2016(7): 44-48. [10] Cheng H, Zhang D, Ren L, et al. Bio-activation of soil with beneficial microbes after soil fumigation reduces soil-borne pathogens and increases tomato yield[J]. Environmental Pollution, 2021, 283: 117160. [11] Roozkhosh M, Rastgoo M, Mohammadnia Ghalibaf K H, et al. Evaluating the efficacy of herbicide options in controlling purple nutsedge (Cyperus rotundus L.) in onion (Allium cepa L.) fields[J]. Crop Protection, 2025, 190: 107084. [12] 苏国礼, 师桂英, 王文珠, 等. 异硫氰酸烯丙酯对兰州百合枯萎病菌的抑菌作用[J]. 甘肃农业大学学报, 2022, 57(1): 98-104, 113. [13] 胡长效, 凤舞剑. 五种杀线虫剂对设施草莓南方根结线虫室内毒力及闷棚药效评价[J]. 北方园艺, 2021(13): 68-72. [14] 左强, 武凤霞, 张淑彬, 等. 不同氮素对根结线虫及土壤微生物的影响[J]. 植物保护, 2022, 48(3): 329-336, 376. [15] Oka Y, Pivonia S. Use of ammonia-releasing compounds for control of the root-knot nematode Meloidogyne javanica[J]. Nematology, 2002, 4(1): 65-71. [16] Bashour I, Alameddine A, Wehbe L, et al. The use of aqua ammonia for the control of soil borne diseases in tomato[J]. Lebanese Science Journal, 2013, 14(1): 41-47. [17] 王凡梅. 不同氮源熏蒸对根结线虫防控及土壤微生物多样性的影响[D]. 南阳: 南阳师范学院, 2023. [18] 陈培根, 蒯元璋. 氨水对桑紫纹羽病菌污染土壤消毒效果及中试报告[J]. 蚕业科学, 1986(4): 236-238. [19] 毛小芳, 李辉信, 陈小云, 等. 土壤线虫三种分离方法效率比较[J]. 生态学杂志, 2004(3): 149-151. [20] 乔万强, 刘永刚, 石明明, 等. 5种药剂对黎尼短体线虫的毒力测定和室内防效[J]. 草原与草坪, 2024, 44(4): 204-210. [21] Wei Z, Liu Y, Feng K, et al. The divergence between fungal and bacterial communities in seasonal and spatial variations of wastewater treatment plants[J]. Science of The Total Environment, 2018, 628-629: 969-978. [22] Liu B. Long-term nitrogen fertilization elevates the activity and abundance of nitrifying and denitrifying microbial communities in an upland soil: implications for nitrogen loss from intensive agricultural systems[J]. Frontiers in Microbiology, 2018, 9: 2424. [23] Orschler L, Agrawal S, Lackner S. On resolving ambiguities in microbial community analysis of partial nitritation anammox reactors[J]. Scientific Reports, 2019, 9(1): 6954. [24] Zheng J, Kirkpatrick C L, Lee D, et al. A full evaporation static headspace gas chromatography method with nitrogen phosphorous detection for ultrasensitive analysis of semi-volatile nitrosamines in pharmaceutical products[J]. The AAPS Journal, 2022, 24(1): 23. [25] 张广旭, 吕亭辉, 周娣, 等. 黄瓜连作土壤高温处理对根结线虫和枯萎病的影响[J]. 植物营养与肥料学报, 2019, 25(6): 917-924. [26] 张广荣, 缪仲梅, 薛莉, 等. 不同土壤添加剂及高温闷棚对防治根结线虫病的影响[J]. 植物保护, 2016, 42(1): 249-252. [27] 陈品三. 杀线虫剂主要类型、特性及其作用机制[J]. 农药科学与管理, 2001(2): 33-35. [28] Kim S J, Lim J M, Hamada M, et al. Marmoricola solisilvae sp. nov. and marmoricola terrae sp. nov., isolated from soil and emended description of the genus marmoricola[J]. International Journal of Systematic and Evolutionary Microbiology, 2015, 65(6): 1825-1830. [29] Liu Z S, Wang X K, Wang K H, et al. Paraflavitalea pollutisoli sp. nov., pollutibacter soli gen. nov. sp. nov., polluticoccus soli gen. nov. sp. nov., and terrimonas pollutisoli sp. nov., four new members of the family chitinophagaceae from polluted soil[J]. Systematic and Applied Microbiology, 2024, 47(2-3): 126503. [30] 丁世杰, 黄绍敏, 张水清, 等. 不同施肥模式对大豆生长季土壤有效氮供给的影响[J]. 核农学报, 2025, 39(2): 391-403. [31] 樊博, 史亮涛, 潘志贤, 等. 干热河谷土壤酶活性对碳氮添加的响应[J]. 生态学报, 2018, 38(23): 8604-8611. [32] Jian S, Li J, Chen J, et al. Soil extracellular enzyme activities, soil carbon and nitrogen storage under nitrogen fertilization: A meta-analysis[J]. Soil Biology and Biochemistry, 2016, 101: 32-43. [33] 王翰琨, 吴永波, 刘俊萍, 等. 生物炭对土壤氮循环及其功能微生物的影响研究进展[J]. 生态与农村环境学报, 2022, 38(6): 689-701. [34] Harter J, Krause H M, Schuettler S, et al. Linking N2O emissions from biochar-amended soil to the structure and function of the N-cycling microbial community[J]. The ISME Journal, 2014, 8(3): 660-674. [35] 郭银花, 赵洪涛, 高雨, 等. 山西太岳山油松林无机氮添加对土壤微生物养分限制类型的影响[J]. 应用与环境生物学报, 2022, 28(1): 137-144. [36] 金伟兴, 罗宝杰, 郭焕茹, 等. 土壤熏蒸和微生物菌剂防控大棚甜瓜连作障碍的土壤生态效应[J]. 土壤与作物, 2024, 13(1): 13-26. [37] 魏翠翠, 刘小飞, 林成芳, 等. 凋落物输入改变对亚热带两种米槠次生林土壤酶活性的影响[J]. 植物生态学报, 2018, 42(6): 692-702. [38] Das S, Wang W, Reeves S, et al. Non-target impacts of pesticides on soil N transformations, abundances of nitrifying and denitrifying genes, and nitrous oxide emissions[J]. Science of The Total Environment, 2022, 844: 157043. [39] 吴华, 冯俊涛, 何军, 等. 辣根素的生物活性研究进展[J]. 中国生物防治学报, 2013, 29(2): 301-306. [40] 陈思婷, 刘子凡, 董志国, 等. 有机肥与微生物菌剂配施对椰园土壤微生态的影响[J]. 热带农业科学, 2021, 41(6): 62-66. [41] Lei Z, Jichao G, Lingli W, et al. Poly-γ-glutamic acid differentially alters the abundances and communities of N functional genes involved in urea hydrolysis, nitrification and denitrification when applied with different nitrogen fertilizers[J]. Applied Soil Ecology, 2023, 190: 105015. |