[1] 李宝聚, 陈立芹, 孟伟军, 等. 湿度调控对番茄灰霉病菌侵染的影响[J]. 植物病理学报, 2003, 33(2): 167-169. [2] 杨利敏, 仝赞华, 郭立华, 等. 番茄灰霉生防菌CQ的分子鉴定及其生防效果研究[J]. 中国生物防治学报, 2015, 31(6): 956-960. [3] 姚士桐, 陆志杰, 金周浩, 等. 春季大棚番茄灰霉病发生规律及影响因子分析[J]. 中国农学通报, 2011, 27(10) :194-198. [4] 卜元卿, 孔源, 智勇, 等. 化学农药对环境的污染及其防控对策建议[J]. 中国农业科技导报, 2014, 16(2): 19-25. [5] 王秋颖. 粉红粘帚霉引发的番茄抗灰霉病的抗病信号传导通路分析[D]. 哈尔滨: 东北农业大学, 2019. [6] 周蒙. 中国生物农药发展的现实挑战与对策分析[J]. 中国生物防治学报, 2021, 37(1): 184-192. [7] Compant S, Duffy B, Nowak J,et al. Use of plant growth promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects[J]. Applied and Environmental Microbiology, 2005, 71:4951-4959. [8] Haidar R, Fermaud M, Calvo-Garrido C,et al. Modes of action for biological control ofBotrytis cinerea by antagonistic bacteria[J]. Phytopathologia Mediterranea, 2016, 55: 13-34. [9] Lu X H, Jiao X L, Hao J J,et al. Characterization of resistance to multiple fungicides inBotrytis cinerea populations from Asian ginseng in northeastern China[J]. European Journal of Plant Pathology, 2016, 144: 467- 476. [10] Nicot P C, Stewart A, Bardin M,et al. Biological Control and Biopesticide Suppression of Botrytis-Incited Disease[M]//Fillinger S, Elad Y. Botrytis-the Fungus, the Pathogen and Its Management in Agricultural Systems, Cham: Springer International Publishing, 2016, 165-187. [11] 司方洁, 任金瑶, 黄涛祥, 等. 贝莱斯芽胞杆菌5YN8生物被膜在防治番茄灰霉病过程中的功能研究[J]. 中国生物防治学报, 2022, 38(5): 1223-1230. [12] 裴莹莹. 贝莱斯芽胞杆菌WZ-37粗提液分离纯化及对番茄灰霉病防效研究[D]. 哈尔滨: 东北农业大学, 2022. [13] 郭庆港, 刘高鸽, 陈秀叶, 等. 枯草芽胞杆菌HMB19198菌株抑菌物质的鉴定及其对番茄灰霉病的防治[J]. 植物病理学报, 2022, 52(2): 247-255. [14] 李凤硕. 两株生防细菌的复合菌剂对番茄灰霉病防效的研究[D]. 哈尔滨: 东北农业大学, 2022. [15] 邱德文. 生物农药的发展现状与趋势分析[J]. 中国生物防治学报, 2015, 31(5): 679-684. [16] 周华飞, 罗楚平, 王晓宇, 等. 枯草芽胞杆菌Bs916突变体库的构建和抑制水稻细菌性条斑病菌相关基因的克隆[J]. 中国农业科学, 2013, 11: 2232-2239. [17] Soledad Figueredo M, Laura Tonelli M, Taurian T,et al. Interrelationships betweenBacillus sp. CHEP5 andBradyrhizobium sp. SEMIA6144 in the induced systemic resistance againstSclerotiumrolfsii and symbiosis on peanut plants[J]. Journal of Biosciences, 2014, 39(5): 877-885. [18] Raton T O, Giro Z G, Diaz M S,et al. In vitro growth inhibition ofCurvularia gudauskasii byBacillus subtilis[J]. Annals Microbiology, 2012, 62(62): 545-551. [19] Gong A D, Li H P, Yuan Q S,et al. Antagonistic mechanism of iturin A and plipastatin A fromBacillus amyloliquefaciens S76-3 from wheat spikes againstFusarium graminearum[J]. PLoS ONE, 2015, 10(2): e0116871. [20] Waewthongrak W, Pisuchpen S, Leelasuphakul W. Effect ofBacillus subtilis and chitosan applications on green mold (Penicilium digitatumSacc.) decay in citrus fruit[J]. Postharvest Biology and Technology, 2015, 99: 44-49. [21] Scholz R, Vater J, Budiharjo A,et al. Amylocyclicin, a novel circular bacteriocin produced byBacillus amyloliquefaciens FZB42[J]. Journal of Bacteriology, 2014, 196(10): 1842-1852. [22] Kim P I, Ryu J, Kim Y H,et al. Production of biosurfactant lipopeptides iturin A, fengycin, and surfactin A fromBacillus subtilis CMB32 for control ofColletotrichum gloeosporioides[J]. Journal of Microbiology and Biotechnology, 2010, 20(1): 138-145. [23] Ge B B, Liu B H, Thinnthinn N,et al.Bacillus methylotrophicus strain NKG-1, isolated from Changbai Mountain,China,has potential applications as a biofertilizer or biocontrol agent[J]. PLoS ONE, 2016, 11(11): e0166079. [24] 赵文珺, 葛蓓孛, 刘炳花, 等. 甲基营养型芽胞杆菌NKG-1对番茄白粉病的防病促生作用研究[J]. 中国农学通报, 2018, 34(1): 104-109. [25] 黄海. 解淀粉芽孢杆菌Ba168对番茄灰霉病的防治作用[D]. 咸阳: 西北农林科技大学, 2014. [26] Yanez-Mendizabal V, Usall J, Vinas L,et al. Potential of a new strain ofBacillus subtilisCPA-8 to control the major postharvest diseases of fruit[J]. Biocontrol Science and Technology, 2011, 21(4): 409-426. [27] 郭明程, 王晓军, 苍涛, 等. 我国生物源农药发展现状及对策建议[J]. 中国生物防治学报, 2019, 35(5): 755-758. [28] 马佳, 李颖, 胡栋, 等. 芽胞杆菌生物防治作用机理与应用研究进展[J]. 中国生物防治学报, 2018, 34(4): 639-648. [29] 谢鑫, 张踞林, 王红宁, 等. 芽孢杆菌中天然脂肽类抗生素的合成及作用机制研究进展[J]. 中国抗生素杂志, 2021, 46(5): 362-370. [30] Zhao H, Shao D, Jiang C,et al. Biological activity of lipopeptides fromBacillus[J]. Applied Microbiology and Biotechnology, 2017, 101(15): 5951-5960. [31] Asaka O, Shoda M. Biocontrol ofRhizoctonia solani damping-off of tomato withBacillus subtilis RB14[J]. Applied and Environmental Microbiology, 1996, 62(11): 4081-4085. [32] Bais HP, Fall R, Vivanco J M. Biocontrol ofBacillus subtilis against infection of Arabidopsis roots byPseudomonas syringae is facilitated by biofilm formation and surfactin production[J]. Plant Physiology, 2004, 134(1): 307-319. [33] Yanez-Mendizabal V, Zeriouh H, Vinas I,et al. Biological control of peach brown rot (Monilinia spp.) byBacillus subtilis CPA-8 is based on production of fengycin-like lipopeptides[J]. European Journal of Plant Pathology, 2012, 132: 609-619. |