[1] Begg G S, Cook S M, Dye R, et al. A functional overview of conservation biological control[J]. Crop Protection, 2017, 97: 145-158. [2] 赵紫华, 欧阳芳, 门兴元, 等. 生境管理——保护性生物防治的发展方向[J]. 应用昆虫学报, 2013, 50(4): 879-889. [3] Lou Y G, Zhang G R, Zhang W Q, et al. Biological control of rice insect pests in China[J]. Biological Control, 2013, 67(1): 8-20. [4] 胡雅辉, 李卫东, 彭兆普. 步甲研究进展[J]. 广东农业科学, 2012, 39(20): 155-158. [5] Yang H, Peng Y, Tian J, et al. Rice field spiders in China: A review of the literature[J]. Journal of Economic Entomology, 2018, 111(1): 53-64. [6] Teng Q, Hu X F, Luo F, et al. Influences of introducing frogs in the paddy fields on soil properties and rice growth[J]. Journal of Soils and Sediments, 2016, 16: 51-61. [7] Fang K, Dai W, Chen H, et al. The effect of integrated rice–frog ecosystem on rice morphological traits and methane emission from paddy fields[J]. Science of the Total Environment, 2021, 783: 147123. [8] Huang S, Wang L, Liu L, et al. Nonchemical pest control in China rice: a review[J]. Agronomy for Sustainable Development, 2014, 34: 275-291. [9] Ali M P, Bari M N, Haque S S, et al. Establishing next-generation pest control services in rice fields: eco-agriculture[J]. Scientific Reports, 2019, 9(1): 1-9. [10] Shanker C, Chintagunta L, Muthusamy S, et al. Flora surrounding rice fields as a source of alternative prey for coccinellids feeding on the pests of rice[J]. European Journal of Entomology, 2018, 115: 364-371. [11] 张莉丽, 程静雯, 李阿根, 等. 田埂种植蜜源植物对稻田天敌昆虫多样性的影响[J]. 浙江农业学报, 2023, 35(6): 1360-1367. [12] 郑云开, 李金玉, 姚凤銮, 等. 寄生蜂在不同农业景观生境中的多样性[J]. 福建农林大学学报(自然科学版), 2014, 43(3): 230-234. [13] 满吉勇, 袁凯, 陈宝雄, 等. 太湖流域稻田管理方式对蜘蛛群落特征的影响[J]. 中国生态农业学报, 2021, 29(9): 1467-1479. [14] 王永珍, 冯怡琳, 赵文智, 等. 绿洲农田玉米和牧草种植对地表节肢动物群落结构的影响[J]. 中国生态农业学报, 2023, 31(11): 1721-1732. [15] 李雪梅, 郑晓旭, 何帅洁, 等. 不同农事操作技术对稻田害虫和天敌种群动态的影响[J]. 应用昆虫学报, 2020, 57(1): 105-112. [16] 刘文惠, 洪波, 胡懿君, 等. 不同景观结构下麦田地面甲虫和蜘蛛物种多样性及优势种分布的时空动态[J]. 应用昆虫学报, 2014, 51(5): 1299-1309. [17] 王晓黎, 王晶琳, 姜海瑞, 等. 上海郊区农田泽蛙种群动态和肥满度状况初探[J]. 四川动物, 2007, 26(2): 424-427. [18] 边振兴, 吴佳璇, 杨玉静, 等. 非耕作生境对相邻耕地步甲和蜘蛛分布影响的差异性[J]. 中国生态农业学报, 2023, 31(7): 1026-1037. [19] 刘靖, 孙良玉, 付迪, 等. 贵州省稻田蜘蛛多样性调查及优势种分析[J]. 应用昆虫学报, 2021, 58(1): 142-157. [20] 周子杨, 黄先才, 孟玲, 等. 有机稻田埂植物上节肢动物多样性[J]. 生态学杂志, 2011, 30(7): 1347-1353. [21] Zou Y, De Kraker J, Bianchi F J J A, et al. Video monitoring of brown planthopper predation in rice shows flaws of sentinel methods[J]. Scientific Reports, 2017, 7(1): 42210. [22] 段美春, 覃如霞, 张宏斌, 等. 农田节肢动物不同取样方法的综合比较[J]. 生物多样性, 2021, 29(4): 477-487. [23] 苏宇乔, 张毅, 贾小容, 等. 几种多样性指标在森林群落分析中的应用比较[J]. 生态科学, 2017, 36(1): 132-138. [24] Mishra P, Pandey C M, Singh U, et al. Selection of appropriate statistical methods for data analysis[J]. Annals of Cardiac Anaesthesia, 2019, 22(3): 297-301. [25] 刘志龙, 王连生, 杜一新, 等. 捕食性天敌在单季稻田与非稻田生境间的迁移规律及其保护利用[J]. 浙江农业学报, 1999, 11(6): 344-348. [26] 郑许松, 俞晓平, 吕仲贤, 等. 稻飞虱天敌在茭白田与水稻田之间的迁移规律[J]. 浙江农业学报, 1999, 11(6): 339-343. [27] 张旭珠, 张鑫, 宋潇, 等. 植被边界带对相邻麦田地表步甲和蜘蛛分布及蚜虫发生的影响[J]. 生态学报, 2018, 38(23): 8442-8454. [28] 孟璇, 李佳宁, 范顺祥, 等. 农田边界和有机生产对稻田节肢动物天敌和害虫多样性的影响研究[J]. 中国生态农业学报, 2023, 31(12): 1963-1975. [29] 钟平生, 吴耀琪, 钟振芳. 有机稻田主要天敌类群发生动态调查[J]. 西南农业学报, 2010, 23(4): 1107-1110. [30] Pérez-Méndez N, Martínez-Eixarch M, Llevat R, et al. Enhanced diversity of aquatic macroinvertebrate predators and biological pest control but reduced crop establishment in organic rice farming[J]. Agriculture, Ecosystems & Environment, 2023, 357: 108691. [31] Sharma S, Shera P S, Sangha K S. Species composition of parasitoids and predators in two rice agro-farming systems—effect of ecological intensification[J]. International Journal of Tropical Insect Science, 2020, 40(2): 233-238. [32] He X, Qiao Y, Sigsgaard L, et al. The spider diversity and plant hopper control potential in the long-term organic paddy fields in sub-tropical area, China[J]. Agriculture, Ecosystems & Environment, 2020, 295: 106921. [33] Tsutsui M H, Kobayashi K, Miyashita T. Temporal trends in arthropod abundances after the transition to organic farming in paddy fields[J]. PLoS ONE, 2018, 13(1): e0190946. [34] Mäder P, Fliessbach A, Dubois D, et al. Soil fertility and biodiversity in organic farming[J]. Science, 2002, 296(5573): 1694-1697. [35] Martini E A, Buyer J S, Bryant D C, et al. Yield increases during the organic transition: improving soil quality or increasing experience?[J]. Field Crops Research, 2004, 86(2/3): 255-266. [36] Pequeno P A C L, Franklin E, Norton R A. Determinants of intra-annual population dynamics in a tropical soil arthropod[J]. Biotropica, 2020, 52(1): 129-138. [37] Bilde T, Topping C. Life history traits interact with landscape composition to influence population dynamics of a terrestrial arthropod: A simulation study[J]. Ecoscience, 2004, 11(1): 64-73. [38] Kiritani K. Predicting impacts of global warming on population dynamics and distribution of arthropods in Japan[J]. Population Ecology, 2006, 48(1): 5-12. [39] Logan J D, Wolesensky W, Joern A. Temperature-dependent phenology and predation in arthropod systems[J]. Ecological Modelling, 2006, 196(3/4): 471-482. [40] Anderson R B. Human traffic and habitat complexity are strong predictors for the distribution of a declining amphibian[J]. PLoS ONE, 2019, 14(3): e0213426. [41] 易杰群, 刘敏, 肖榕, 等. 狼蛛科蜘蛛的研究进展[J]. 贵州农业科学, 2022, 50(7): 59-66. [42] 叶昌媛. 中国珍稀及经济两栖动物[M]. 成都: 四川科学技术出版社, 1993: 249-253. [43] 陈思妤, 刘丕庆. 2010—2020年广西南宁稻飞虱种群动态分析[J].中国植保导刊, 2021, 41(12): 25-30. [44] 陆佳浩, 冒慧颖, 周成, 等. 2015—2020年上海松江稻飞虱发生情况分析[J]. 中国植保导刊, 2021, 41(9): 49-52, 58. [45] 董红刚, 耿跃, 左希, 等. 扬州邗江地区稻纵卷叶螟发生动态及影响因素分析[J]. 环境昆虫学报, 2021, 43(4): 850-857. [46] Luo Y, Fu H, Traore S. Biodiversity conservation in rice paddies in China: toward ecological sustainability[J]. Sustainability, 2014, 6(9): 6107-6124. [47] Aldini G M, Martono E, Trisyono Y A. Diversity of natural enemies associated with refuge flowering plants of Zinnia elegans, Cosmos sulphureus, and Tagetes erecta in rice ecosystem[J]. Jurnal Perlindungan Tanaman Indonesia, 2019, 23(2): 285-291. [48] Zhu P, Gurr G M, Lu Z, et al. Laboratory screening supports the selection of sesame (Sesamum indicum) to enhance Anagrus spp. parasitoids (Hymenoptera: Mymaridae) of rice planthoppers[J]. Biological control, 2013, 64(1): 83-89. [49] Zhu P, Lu Z, Heong K, et al. Selection of nectar plants for use in ecological engineering to promote biological control of rice pests by the predatory bug, Cyrtorhinus lividipennis, (Heteroptera: Miridae)[J]. PLoS ONE, 2014, 9(9): e108669. [50] Xu Q C, Fujiyama S, Xu H L. Biological pest control by enhancing populations of natural enemies in organic farming systems[J]. Journal of Food Agriculture and Environment, 2011, 9(2): 455-463. [51] 李姝, 王杰, 黄宁兴, 等. 捕食性天敌储蓄植物系统研究进展与展望[J]. 中国农业科学, 2020, 53(19): 3975-3987. [52] Tang H, Yun W, Liu W, et al. Structural changes in the development of China’s farmland consolidation in 1998–2017: Changing ideas and future framework[J]. Land Use Policy, 2019, 89: 104212. [53] Li L, Hu R, Huang J, et al. A farmland biodiversity strategy is needed for China[J]. Nature Ecology & Evolution, 2020, 4(6): 772-774. [54] Zou Y, De Kraker J, Bianchi F J J A, et al. Do diverse landscapes provide for effective natural pest control in subtropical rice?[J]. Journal of Applied Ecology, 2020, 57(1): 170-180. [55] Gong SX, Zhu, YL, Fu DM, et al., 2024. Land consolidation impacts the abundance and richness of natural enemies but not pests in small-holder rice systems[J]. Journal of Applied Ecology, 61: 1587–1598 [56] 尤士骏, 张杰, 李金玉, 等. 利用生物多样性控制作物害虫的理论与实践[J]. 应用昆虫学报, 2019, 56(6): 1125-1147. |