[1] Xia G M, Kang S Z, Li F S, et al. Diurnal and seasonal variations of sap flow of Caragana korshinskii in the arid desert region of north-west China[J]. Hydrological Processes, 2008, 22(8): 1197-1205. [2] She D L, Xia Y Q, Shao M G, et al. Transpiration and canopy conductance of Caragana korshinskii trees in response to soil moisture in sand land of China[J]. Agroforestry Systems, 2013, 87(3): 667-678. [3] Ma C C, Guo H Y, Wu J B, et al. Acclimation of photosynthetic traits of Caragana species to desert environment in Inner Mongolian Plateau[J]. Arid Land Research and Management, 2014, 28(1): 87-101. [4] Ma C C, Gao Y B, Guo H Y, et al. Physiological adaptations of four dominant Caragana species in the desert region of the Inner Mongolia Plateau[J]. Journal of Arid Environments, 2008, 72(3): 247-254. [5] Xie L N, Guo H Y, Ma C C. Alterations in flowering strategies and sexual allocation of Caragana stenophylla along a climatic aridity gradient[J]. Scientific Reports, 2016, 6(1): 33602. [6] Xie L N, Ma C C, Guo H Y, et al. Distribution pattern of Caragana species under the influence of climate gradient in the Inner Mongolia region, China[J]. Journal of Arid Land, 2014, 6(3): 311-323. [7] Cao C Y, Jiang D M, Teng X H, et al. Soil chemical and microbiological properties along a chronosequence of Caragana microphylla Lam. plantations in the Horqin sandy land of northeast China[J]. Applied Soil Ecology, 2008, 40(1): 78-85. [8] Su Y Z, Zhao H L. Soil properties and plant species in an age sequence of Caragana microphylla plantations in the Horqin Sandy Land, north China[J]. Ecological Engineering, 2003, 20(3): 223-235. [9] Li Q X, Jia Z Q, Zhu Y J, et al. Spatial heterogeneity of soil nutrients after the establishment of Caragana intermedia plantation on sand dunes in alpine sandy land of the tibet plateau[J]. PLoS ONE, 2015, 10(5): e0124456. [10] 张大治. 荒漠沙生植物种子昆虫生态学研究[M]. 银川: 阳光出版社, 2021. [11] 陈小蔚, 张大治, 贺达汉, 等. 基于地统计学的柠条豆象种群空间格局研究[J]. 安徽农业科学, 2011, 39(7): 3988-3990, 4017. [12] 罗于洋. 柠条种子害虫对柠条种子生产的影响及其综合治理研究[D]. 呼和浩特: 内蒙古农业大学, 2005. [13] 贺泽帅. 宁夏荒漠区柠条种实害虫-天敌空间变异的尺度效应分析[D]. 银川: 宁夏大学, 2020. [14] 张圣昕. 荒漠景观格局对柠条种子害虫——天敌营养级及种群生存力影响的研究[D]. 银川: 宁夏大学, 2021. [15] 张锋. 黄土丘陵沟壑植被恢复区节肢动物群落特征及时空动态研究[D]. 杨凌: 西北农林科技大学, 2011. [16] 李后魂. 柠条豆象及其天敌发育起点温度和有效积温的研究[J]. 昆虫知识, 1990(1): 22-24. [17] 何俊华, 陈学新, 马云. 中国动物志昆虫纲第18卷膜翅目茧蜂科(一)[M]. 北京: 科学出版社, 2000. [18] 陈学新, 何俊华, 马云. 中国动物志昆虫纲第18卷膜翅目茧蜂科(二)[M]. 北京: 科学出版社, 2004. [19] 黄大卫, 肖晖. 中国动物志昆虫纲第42卷膜翅目金小蜂[M]. 北京: 科学出版社, 2005. [20] 樊军杰. 中国姬小蜂亚科分类研究(膜翅目: 姬小蜂科)[D]. 哈尔滨: 东北林业大学, 2024. [21] 李明锐. 中国灿姬小蜂亚科分类研究(膜翅目: 姬小蜂科)[D]. 哈尔滨: 东北林业大学, 2023. [22] 黎文建. 中国啮小蜂亚科分类研究(膜翅目: 姬小蜂科)[D]. 哈尔滨: 东北林业大学, 2021. [23] Hebert P D N, Ratnasingham S, De Waard J R. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species[J]. Proceedings of the Royal Society of London. Series B: Biological Sciences, 2003, 270: S96-S99. [24] 张元臣, 鲍梦楠, 薛爽, 等. 汤川瘿蜂寄生性天敌调查及其优势天敌长尾小蜂生物学特性[J]. 林业科学, 2023, 59(6): 112-117. [25] 朱秀. 枸杞红瘿蚊拟长尾小蜂生物学特性及其寄主识别的化学生态机制研究[D]. 北京: 北京协和医学院, 2022. [26] 张方平, 朱俊洪, 李磊, 等. 寄主大小对副珠蜡蚧阔柄跳小蜂产卵选择及繁殖的影响[J]. 环境昆虫学报, 2017, 39(5): 1130-1134. [27] 彭萍, 王晓庆, 李品武, 等. 不同品种茶园害虫及天敌群落多样性研究[J]. 西南大学学报(自然科学版), 2011, 33(6): 30-34. [28] 何康来, 王振营, 文丽萍, 等. 我国玉米主产区亚洲玉米螟越冬幼虫天敌调查[J]. 中国生物防治, 2002, 28(2): 49-53. [29] 丛胜波, 许冬, 杨妮娜, 等. 黄秋葵田主要害虫、天敌种群动态及时间生态位分析[J]. 中国生物防治学报, 2022, 38(3): 753-759. [30] 孙星星, 陈永成, 王凡, 等. DNA条形码技术在桃蚜寄生蜂鉴定上的应用[J]. 浙江农业科学, 2024, 65(9): 2147-2151. [31] 于文娟, 何佳春, 万品俊, 等. 四川省稻田越冬代二化螟寄生性天敌的研究[J]. 植物保护, 2021, 47(6): 240-247, 253. [32] 张媛. 宁夏中部荒漠区柠条种子害虫寄生性天敌多样性研究[D]. 银川: 宁夏大学, 2024. [33] Anjum-Zubair M, Schmidt-Entling M H, Querner P, et al. Influence of within field position and adjoining habitat on carabid beetle assemblages in winter wheat[J]. Agricultural and Forest Entomology, 2010, 12(3): 301. [34] Cooper W R, Rieske L K. Gall structure affects ecological associations of Dryocosmus kuriphilus (Hymenoptera: Cynipidae)[J]. Environmental Entomology, 2010, 39(3): 787-797. [35] Abe Y, Melika G, Stone G N. The diversity and phylogeography of cynipid gallwasps (Hymenoptera: Cynipidae) of the oriental and eastern Palearctic regions, and their associated communities[J]. Oriental Insects, 2007, 41(1): 169-212. [36] 李冰琪. 鄂尔多斯市2022年气候影响评价[J]. 内蒙古科技与经济, 2024(14): 74-77. [37] 孟芳, 李鑫, 张金钰, 等. 金纹细蛾及其优势寄生蜂主要行为的研究[J]. 西北农林科技大学学报(自然科学版), 2010, 38(5): 93-100, 105. [38] 姜润. 凹面灿姬小蜂Entedon sp的初步观察[J]. 林业科技通讯, 1982(10): 24-25. [39] 王晶, 陈永明, 李天昊, 等. 短梗长尾啮小蜂的生物学特性[J]. 环境昆虫学报, 2021, 43(3): 716-722. [40] 代晓彦, 陈浩, 王瑞娟, 等. 不同日龄毛锤角细蜂寄生黑腹果蝇蛹的生物学特性研究[J]. 山东农业科学, 2024, 56(3): 115-119. [41] 温丽娜, 符悦冠, 张方平, 等. 副珠蜡蚧阔柄跳小蜂Metaphycus parasaissetiae Zhang and Huang生物学特性的研究[J]. 中国生物防治, 2009, 25(2): 112-119. [42] 浑之英, 路子云, 耿亚玲, 等. 中红侧沟茧蜂逐日产卵规律及子代性分配[J]. 中国生物防治, 2005, 21(4): 12-15. [43] 王晶, 陈永明, 李天昊, 等. 短梗长尾啮小蜂的生物学特性[J]. 环境昆虫学报, 2021, 43(3): 716-722. [44] 贾克锋, 黄金标, 徐志宏, 等. 栗绛蚧长尾啮小蜂生物学及利用[J]. 浙江林学院学报, 2004, 21(1): 75-78. [45] 黄大庄, 刘辉芳, 王志刚, 等. 桑天牛卵长尾啮小蜂的繁殖生物学研究[J]. 林业科学, 2005, 41(2): 195-200. [46] 时敏, 唐璞, 王知知, 等. 中国寄生蜂研究及其在害虫生物防治中的应用[J]. 应用昆虫学报, 2020, 57(3): 491-548. [47] 李小敏, 刘君昂, 董文统, 等. 补充外源营养对螟蛉绒茧蜂寿命和繁殖力的影响[J]. 植物保护学报, 2018, 45(2): 208-213. [48] 李银煳, 张峰, 杨凡萱, 等. 日本细毛环腹瘿蜂生物学特性研究[J]. 环境昆虫学报, 2021, 43(1): 191-198. [49] Zoebelein G. Der Honigtau als Nahrung der Insekten: Teil I[J]. Zeitschrift für Angewandte Entomologie, 2009, 38(4): 369-416. [50] 吴琦琦, 吕宝乾, 曹凤勤, 等. 椰子织蛾幼虫寄生蜂-麦蛾柔茧蜂的生物学特性初步研究[J]. 环境昆虫学报, 2018, 40(6): 1364-1369. [51] Kishinevsky M, Keasar T, Harari A R, et al. A comparison of naturally growing vegetation vs. border-planted companion plants for sustaining parasitoids in pomegranate orchards[J]. Agriculture, Ecosystems & Environment, 2017, 246: 117-123. [52] Gurr G M, Wratten S D, Landis D A, et al. Habitat management to suppress pest populations: progress and prospects[J]. Annual Review of Entomology, 2017, 62: 91-109. [53] Souza I L, Tomazella V B, Santos A J N, et al. Parasitoids diversity in organic sweet pepper (Capsicum annuum) associated with Basil (Ocimum basilicum) and Marigold (Tagetes erecta)[J]. Brazilian Journal of Biology, 2018, 79: 603-611. [54] Zhao H, Li J, Guo L, et al. Crop diversity at the landscape level affects the composition and structure of the vegetation-dwelling arthropod communities in naked oat (Avena chinensis) fields[J]. International Journal of Environmental Research and Public Health, 2021, 18(1): 30. [55] 李海燕, 宗世祥, 盛茂领, 等. 灰斑古毒蛾寄生性天敌昆虫的调查[J]. 林业科学, 2009, 45(2): 167-170. [56] Cloutier C, Duperron J, Tertuliano M, et al. Host instar, body size and fitness in the koinobiotic parasitoid Aphidius nigripes[J]. Entomologia Experimentalis et Applicata, 2000, 97(1): 29-40. [57] 王小艺, 杨忠岐. 多寄主型寄生性天敌昆虫的寄主适应性及其影响因素[J]. 生态学报, 2010, 30(6): 1615-1627. [58] Mochiah M B, Ngi-Song A J, Overholt W A, et al. Host suitability of four cereal stem borers (Lepidoptera: Crambidae, Noctuidae) for different geographic populations of Cotesia sesamiae (Cameron) (Hymenoptera: Braconidae) in Kenya[J]. Biological Control, 2001, 21(3): 285-292. [59] 孙新涛, 林乃铨, 王黎明, 等. 化学和物理因子在寄生蜂寻找寄主过程中的作用[J]. 武夷科学, 2003, 230-237. [60] 林拥军, 华红霞, 何予卿, 等. 水稻褐飞虱综合治理研究与示范——农业公益性行业专项“水稻褐飞虱综合防控技术研究”进展[J]. 应用昆虫学报, 2011, 48(5): 1194-1201. [61] Li L, Sun J H. Host suitability of a gregarious parasitoid on beetle hosts: flexibility between fitness of adult and offspring[J]. PLoS ONE, 2011, 6(4): e18563. [62] Wei K, Tang Y L, Wang X Y, et al. The developmental strategies and related profitability of an idiobiont ectoparasitoid Sclerodermus pupariae vary with host size[J]. Ecological Entomology, 2014, 39(1): 101-108. [63] Li X, Li B, Meng L. Oviposition strategy for superparasitism in the gregarious parasitoid Oomyzus sokolowskii (Hymenoptera: Eulophidae)[J]. Bulletin of Entomological Research, 2019, 109(2): 221-228. |