[1] 吴志刚, 朱蒙猛, 张蓉, 等. 苜蓿斑蚜对我国苜蓿商品草的经济损失评估[J]. 宁夏农林科技, 2013, 54(11):74-77. [2] 唐平华, 陈国平, 朱明库, 等. 蚜虫防治技术研究进展[J]. 植物保护, 2013, 39(2):5-12, 19. [3] 邱德文. 我国生物农药现状分析与发展趋势[J]. 植物保护, 2007, 33(1):27-32. [4] Fan L M. Research on the development of botanical pesticide based on analysis of scientific materials[J]. Advanced Materials Research, 2011, (282-283):509-513. [5] Ryan C A. Protease inhibitors in plants:genes for improving defenses against insects and pathogens[J]. Annual Review of Phytopathology, 1990, 28(1):425-449. [6] Hilder V A, Gatehouse A M R, Sheerman S E, et al. A novel mechanism of insect resistance engineered into tobacco[J]. Nature, 1987, 330(6144):160-163. [7] Chikhale R S D N J. Plant protease inhibitors:Strategy for pest control in crops[J]. Lifeences Leaflets, 2014, 58:976-1098. [8] Rawlings N D, Tolle D P, Barrett A J. Evolutionary families of peptidase inhibitors[J]. Biochemical Journal, 2004, 378(3):705-716. [9] Houseman J G A M, Larocqueand N M R. The insect protease, plant protease inhibitors, and possible pest control[J]. Memoirs of the Entomological Society of Canada, 1991, 123(159):3-11. [10] Franco O L, Dias S C, Magalhaes C P, et al. Effects of soybean Kunitz trypsin inhibitor on the cotton boll weevil (Anthonomns grandis)[J]. Phytochemistry, 2004, 65(1):81-89. [11] Chougule N P, Doyle E, Fitches E, et al. Biochemical characterization of midgut digestive proteases from Mamestra brassicae (Lepidoptera:Noctuidae) and effect of soybean Kunitz inhibitor (SKTI) in feeding assays[J]. Journal of Insect Physiology, 2008, 54(3):563-572. [12] Ryan C A. Protease inhibitors in plants:genes for improving defenses against insects and pathogens[J]. Annual Review of Phytopathology, 1990, 28(1):425-449. [13] Macedo M L R, Freire M G M. Insect digestive enzymes as a target for pest control[J]. Invertebrate Survival Journal, 2011, 8(2):190-198. [14] 高文兴, 王孟卿, 陈红印. 蚜虫人工饲料的研究及应用进展[J]. 中国生物防治学报, 2012, 28(1):121-127. [15] Mittler T E, Dadd R H. Studies on the artificial feeding of the aphid Myzus persicae (Sulzer)-I[J]. Journal of Insect Physiology, 1963, 9(5):623-645. [16] Auclair J L, Cartier J J. Pea aphid:rearing on a chemically defined diet[J]. Science, 1963, 142(3595):1068. [17] Cress D C, Chada H L. Development on two synthetic diets for the greenbug, Schizaphisgraminum[J]. Annals of the Entomological Society of America, 1971, 64(6):1237-1240. [18] Mittler T E, Dadd R H. Studies of relative uptake of water and sucrose solutions on the artificial feeding of the aphid Myzus persicae (Sulzer)[J]. Journal of Insect Physiology, 1963, 9(5):623-645. [19] Jacques C J, Auclair J L. Pea aphid behaviour:colour preference on a chemical diet[J]. Canadian Entomologist, 1964, 96(9):1240-1243. [20] Tahori A S, Hazan A. Rearing of the black citrus aphid Toxoptera aurantii on chemically defined diets[J]. Journal of Insect Physiology, 1970, 16(10):1975-1981. [21] Akey D H, Beck S D. Nutrition of the pea aphid, Acyrthosiphon pisum:requirements for trace metals, sulphur, and cholesterol[J]. Journal of Insect Physiology, 1972, 18(10):1901-1914. [22] Kunkel H, Harris K F, Maramorosch K, et al. Aphis as Virus Vectors[M]. New York:Academic Press, 1977, 311-318. [23] Mittler T E. Studies on the feeding and nutrition of Tuberolachnus salignus (Gmelin) (Homoptera, Aphididae)[J]. Journal of Experimental Biology, 1958, 35(1):74-84. [24] Emden H F V. An Increase in the longevity of adult aphis fabae, fed artificially through parafilm membranes on liquids under pressure[J]. Entomologia Experimentalis et Applicata, 1967, 10(2):166-170. [25] Nalbant D. Water stress and Russian wheat aphid interactions in wheat[J]. Texas Tech University, 1995(12):182. [26] Mariateresa V, Luigi R C, Raffaele G, et al. Functional expression on bacteriophage of the mustard trypsin inhibitor MTI-2[J]. Biochemical and Biophysical Research Communications, 2001, 280(3):813-817. [27] Chen D Y, Chen F Y, Hong G J, et al. Jasmonate response decay and defense metabolite accumulation contributes to age-regulated dynamics of plant insect resistance[J]. Nature Communications, 2017, 8(10):13925. [28] 黄伟. 不同紫花苜蓿品种抗蚜性鉴定及抗性机理初步研究[D]. 杨凌:西北农林科技大学, 2007. [29] Mauch-Mani B, Baccelli I, Luna E, et al. Defense priming:an adaptive part of induced resistance[J]. Annual Review of Plant Biology, 2017, 68(1):485. [30] Tatsuta K, Mikami N, Fujimoto K, et al. The structure of chymostatin, a chymotrypsin inhibitor[J]. Journal of Antibiotics, 1973, 26(11):625-646. [31] Roychaudhuri R, Sarath G, Zeece M, et al. Reversible denaturation of the soybean Kunitz trypsin inhibitor[J]. Archives of Biochemistry and Biophysics, 2003, 412(1):20. [32] Scarafoni A, Consonni A, Galbusera V, et al. Identification and characterization of a Bowman-Birk inhibitor active towards trypsin but not chymotrypsin in Lupinus albus seeds[J]. Phytochemistry, 2008, 69(9):1820. [33] Schneider F, Houseman J G, Morrison P E. Activity cycles and the regulation of digestive proteases in the posterior midgut of Stomoxys calcitrans[J]. Insect Biochemistry, 1987, 17(6):859-862. [34] Chougule N P, Doyle E, Fitches E, et al. Biochemical characterization of midgut digestive proteases from Mamestra brassicae and effect of soybean Kunitz inhibitor (SKTI) in feeding assays[J]. Journal of Insect Physiology, 2008, 54(3):563-572. [35] Broadway R M, Duffey S S. Plant proteinase inhibitors:Mechanism of action and effect on the growth and digestive physiology of larval Heliothis zea, and Spodoptera exiqua[J]. Journal of Insect Physiology, 1986, 32(10):827-833. [36] 王琛柱, 项秀芬, 张书芳, 等. 大豆胰蛋白酶抑制剂对棉铃虫幼虫消化生理和生长发育的影响[J]. 昆虫学报, 1995, 38(3):272-277. [37] 徐林波. 苜蓿斑蚜实验种群生命表研究[J]. 中国植保导刊, 2013, 33(3):5-7, 11. |