journal1 ›› 2019, Vol. 35 ›› Issue (1): 127-133.DOI: 10.16409/j.cnki.2095-039x.2019.01.012
Previous Articles Next Articles
WU Shengyong1, YANG Qingpo2, XU Changchun3, XU Xuenong1, LEI Zhongren1
Received:
2018-09-25
Online:
2019-02-08
Published:
2019-01-31
CLC Number:
WU Shengyong, YANG Qingpo, XU Changchun, XU Xuenong, LEI Zhongren. Research Prospect in Interactions between Entomopathogenic Fungi and Predatory Mites and Their Combined Applications[J]. journal1, 2019, 35(1): 127-133.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zgswfz.com.cn/EN/10.16409/j.cnki.2095-039x.2019.01.012
[1] Ikegawa Y, Ezoe H, Namba T. Adaptive defense of pests and switching predation can improve biological control by multiple natural enemies[J]. Population Ecology, 2015, 57(2):381-395. [2] Ong T W Y, Vandermeer J H. Coupling unstable agents in biological control[J]. Nature Communication, 2015, 6:5991. [3] Shah P A, Pell J K. Entomopathogenic fungi as biological control agents[J]. Applied Microbiology and Biotechnology, 2003, 61(5-6):413-423. [4] Tian J, Diao H, Liang L, et al. Pathogenicity of Isaria fumosorosea to Bemisia tabaci, with some observations on the fungal infection process and host immune response[J]. Journal of Invertebrate Pathology, 2015, 130(8):147-153. [5] Glare T R, O'Callaghan M. Microbial biopesticides for control of invertebrates:progress from New Zealand[J]. Journal of Invertebrate Pathology, 2017, doi.org/10.1016/j.jip.2017.11.014 [6] Wraight S P, Ramos M E. Delayed efficacy of Beauveria bassiana, foliar spray applications against Colorado potato beetle:impacts of number and timing of applications on larval and next-generation adult populations[J]. Biological Control, 2015, 83(1):51-67. [7] Jenkins N E, Thomas M B. Effect of formulation and application method on the efficacy of aerial and submerged conidia of Metarhizium flavoviride for locust and grasshopper control[J]. Pest Management Science, 2015, 46(4):299-306. [8] Narayanan K. Insect defence:its impact on microbial control of insect pests[J]. Current Science, 2004, 86(6):375-387. [9] Wu S Y, Gao Y L, Smagghe G, et al. Interactions between the entomopathogenic fungus Beauveria bassiana, and the predatory mite Neoseiulus barkeri, and biological control of their shared prey/host Frankliniella occidentalis[J]. Biological Control, 2016, 98(6):43-51. [10] Zhang Z Q. Phytoseiid Mites[M]//Mites of Greenhouses:Identification, Biology and Control. Oxon, UK:CABI Publishing, 2003, 171-202. [11] Ghazy N A, Osakabe M, Negm M W, et al. Phytoseiid mites under environmental stress[J]. Biological Control, 2016, 96(5):120-134. [12] Messelink G J, Van Steenpaal S E F, Ramakers P M J. Evaluation of phytoseiid predators for control of western flower thrips on greenhouse cucumber[J]. Biocontrol, 2006, 51(6):753-768. [13] Easterbrook M A, Fitzgerald J D, Solomon M G. Biological control of strawberry tarsonemid mite Phytonemus pallidus and two-spotted spider mite Tetranychus urticae on strawberry in the UK using species of Neoseiulus (Amblyseius) (Acari:Phytoseiidae)[J]. Experimental and Applied Acarology, 2001, 25(1):25-36. [14] Opit G P, Nechols J R, Margolies D C. Biological control of two spotted spider mites, Tetranychus urticae Koch (Acari:Tetranychidae), using Phytoseiulus persimilis Athias-Henriot (Acari:Phytoseidae) on ivy geranium:assessment of predator release ratios[J]. Biological Control, 2004, 29(3):445-452. [15] Negm M W, Alatawi F J, Aldryhim Y N. Biology, predation, and life table of Cydnoseius negevi and Neoseiulus barkeri (Acari:Phytoseiidae) on the old world date mite, Oligonychus afrasiaticus (Acari:Tetranychidae)[J]. Journal of Insect Science, 2014, 14(1):177-177. [16] Greco N M, Sánchez N E, Liljesthröm G G. Neoseiulus californicus (Acari:Phytoseiidae) as a potential control agent of Tetranychus urticae (Acari:Tetranychidae):effect of pest/predator ratio on pest abundance on strawberry[J]. Experimental and Applied Acarology, 2005, 37(1-2):57-66. [17] van der Hoeven W A D, van Rijn P C J. Factors affecting the attack success of predatory mites on thrips larvae[J]. Proceedings of Experimental and Applied Entomology, 1990(1):25-30. [18] Wu S Y, Gao Y L, Xu X N, et al. Evaluation of Stratiolaelaps scimitus and Neoseiulus barkeri for biological control of thrips on greenhouse cucumbers[J]. Biocontrol Science and Technology, 2014, 24(10):1110-1121. [19] Chandler D, Davidson G, Jacobson R J. Laboratory and glasshouse evaluation of entomopathogenic fungi against the two-spotted spider mite, Tetranychus urticae (Acari:Tetranychidae), on tomato, Lycopersicon esculentum[J]. Biocontrol Science and Technology, 2005, 15(1):37-54. [20] Wu S Y, He Z, Wang E D, et al. Application of Beauveria bassiana, and Neoseiulus barkeri, for improved control of Frankliniella occidentalis, in greenhouse cucumber[J]. Crop Protection, 2017, 96(6):83-87. [21] Ullah M S, Lim U T. Synergism of Beauveria bassiana and Phytoseiulus persimilis in control of Tetranychus urticae on bean plants[J]. Systematic and Applied Acarology, 2017, 22(11):1924-1935. [22] Vergel S J N, Bustos R A, Rodríguez C D, et al. Laboratory and greenhouse evaluation of the entomopathogenic fungi and garlic-pepper extract on the predatory mites, Phytoseiulus persimilis and Neoseiulus californicus and their effect on the spider mite Tetranychus urticae[J]. Biological Control, 2011, 57(2):143-149. [23] Dolinski C, Lacey L A. Microbial control of arthropod pests of tropical tree fruit[J]. Neotropical Entomology, 2007, 36(2):161-179. [24] Midthassel A, Leather S R, Wright D J, et al. Compatibility of Amblyseius swirskii with Beauveria bassiana:two potentially complimentary biocontrol agents[J]. Biocontrol, 2016, 61(4):437-447. [25] Jacobson R J, Chandler D, Fenlon J, et al Compatibility of Beauveria bassiana (Balsamo) Vuillemin with Amblyseius cucumeris Oudemans (Acarina:Phytoseiidae) to control Frankliniella occidentalis Pergande (Thysanoptera:Thripidae) on cucumber plants[J]. Biocontrol Science and Technology, 2001, 11(3):391-400. [26] Wu S Y, Gao Y L, Zhang Y P, et al. An entomopathogenic strain of Beauveria bassiana against Frankliniella occidentalis with no detrimental effect on the predatory mite Neoseiulus barkeri:evidence from laboratory bioassay and scanning electron microscopic observation[J]. PLoS ONE, 2014, 9(1):e84732. [27] Lin G, Tanguay A, Guertin C, et al. A new method for loading predatory mites with entomopathogenic fungi for biological control of their prey[J]. Biological Control, 2017, 115(9):105-111. [28] Seiedy M, Tork M, Deyhim F. Effect of the entomopathogenic fungus Beauveria bassiana on the predatory mite Amblyseius swirskii (Acari:Phytoseiidae) as a non-target organism[J]. Systematic and Applied Acarology, 2015, 20(3):241-250. [29] Dogan Y O, Hazir S, Yildiz A, et al. Evaluation of entomopathogenic fungi for the control of Tetranychus urticae, (Acari:Tetranychidae) and the effect of Metarhizium brunneum, on the predatory mites (Acari:Phytoseiidae)[J]. Biological Control, 2017, 111(8):6-12. [30] Roy H E, Pell J K. Interactions between entomopathogenic fungi and other natural enemies:implications for biological control[J]. Biocontrol Science and Technology, 2000, 10(6):737-752. [31] Donka A, Sermann H, Buttner C. Effect of the entomopathogenic fungus Lecanicillinm muscarium on the predatory mite Phytoseiulus persimilis as a non-target organism[J]. Communications in Agricultural and Applied Biological Sciences. 2008, 73(3):395-404. [32] Ludwig S W, Oetting R D. Susceptibility of natural enemies to infection of Beauveria bassiana and impact of insecticides on Ipheseius degenerans (Acari Phytoseiidae)[J]. Journal Agricultural Urban Entomology, 2001, 18(3):169-178. [33] Roy H E, Steinkraus D C, Eilenberg J, et al. Bizarre interactions and endgames:entomopathogenic fungi and their arthropod hosts[J]. Annual Review of Entomology, 2006, 51(1):331-357. [34] Ullah M S, Lim U T. Laboratory evaluation of the effect of Beauveria bassiana on the predatory mite Phytoseiulus persimilis (Acari:Phytoseiidae)[J]. Journal of Invertebrate Pathology, 2017, 148(6):102-109. [35] Duso C, Malagnini V, Pozzebon A, et al. Comparative toxicity of botanical and reduced-risk insecticides to Mediterranean populations of Tetranychus urticae and Phytoseiulus persimilis (Acari Tetranychidae, Phytoseiidae)[J]. Biological Control, 2008, 47(1):16-21. [36] Seiedya M, Saboorib A, Allahyari H. Interactions of two natural enemies of Tetranychus urticae, the fungal Entomopathogen Beauveria bassiana and the predatory mite, Phytoseiulus persimilis[J]. Biocontrol Science and Technology, 2012, 22(8):873-882. [37] Agboton B V, Hanna R, Onzo A, et al. Interactions between the predatory mite Typhlodromalus aripo and the entomopathogenic fungus Neozygites tanajoae and consequences for the suppression of their shared prey/host Mononychellus tanajoa[J]. Experimental and Applied Acarology, 2013, 60(2):205-217. [38] Wu S Y, Gao Y L, Xu X N, et al. Feeding on Beauveria bassiana-treated Frankliniella occidentalis causes negative effects on the predatory mite Neoseiulus barkeri[J]. Scientific Reports, 2015, 5:12033. [39] Wekesa V W, Moraes G J, Knapp M, et al. Interactions of two natural enemies of Tetranychus evansi, the fungal pathogen Neozygites floridana (Zygomycetes:Entomophthorales) and the predatory mite, Phytoseiulus longipes (Acari:Phytoseiidae)[J]. Biological Control, 2007, 41(3):408-414. [40] Wu S Y, Gao Y L, Xu X N, et al. Compatibility of Beauveria bassiana, with Neoseiulus barkeri, for control of Frankliniella occidentalis[J]. Journal of Integrative Agriculture, 2015, 14(1):98-105. [41] Seiedy M, Saboori A, Allahyari H, et al. Functional response of Phytoseiulus persimilis (Acari:Phytoseiidae) on untreated and Beauveria bassiana-treated adults of Tetranychus urticae (Acari:Tetranychidae)[J]. Journal of Insect Behavior, 2012, 25(6):543-553. [42] Seiedy M. Compatibility of Amblyseius swirskii (Acari:Phytoseiidae) and Beauveria bassiana for biological control of Trialeurodes vaporariorum (Hemiptera:Aleyrodidae)[J]. Systematic and Applied Acarology, 2015, 20(7):731-738. [43] Ortiz-Urquiza A, Keyhani N O. Action on the surface:entomopathogenic fungiversus the insect cuticle[J]. Insects, 2013, 4(3):357-374. [44] Srivastava C N, Maurya P, Sharma P, et al. Prospective role of insecticides of fungal origin:Review. Entomology Research[J]. 2009, 39(6):341-355. [45] Wu S Y, Xie H C, Li M Y, et al. Highly virulent Beauveria bassiana strains against the two-spotted spider mite, Tetranychus urticae, show no pathogenicity against five phytoseiid mite species[J]. Experimental and Applied Acarology, 2016, 70(4):421-435. [46] Wu S Y, Guo J F, Xing Z L, et al. Comparison of mechanical properties for mite cuticles in understanding passive defense of phytoseiid mite against fungal infection[J]. Material and Design, 2018, 140(2):241-248. [47] Farish D J. The evolutionary implications of qualitative variation in the grooming behaviour of the Hymenoptera (Insecta)[J]. Animal Behavior, 1972, 20(4):662-676. [48] Wu S Y, Xing Z L, Sun W N, et al. Effects of Beauveria bassiana on predation and behavior of the predatory mite Phytoseiulus persimilis[J]. Journal of Invertebrate Pathology, 2018, 153(3):51-56. [49] Seiedy M, Saboori A, Zahedi-Golpayegani A. Olfactory response of Phytoseiulus persimilis (Acari:Phytoseiidae) to untreated and Beauveria bassiana-treated Tetranychus urticae (Acari:Tetranychidae)[J]. Experimental and Applied Acarology, 2013, 60(2):219-227. [50] Wu S Y, Zhang Y, Xu X N, et al. Insight into the feeding behavior of predatory mites on Beauveria bassiana, an arthropod pathogen[J]. Scientific Reports, 2016, 6:24062. [51] Alma C R, Goettel M S, Roitberg B D, et al. Combined effects of the entomopathogenic fungus, Paecilomyces fumosoroseus Apopka-97, and the generalist predator, Dicyphus hesperus, on whitefly populations[J]. Biocontrol, 2007, 52(5):669-681. [52] Letourneau D K, Jedlicka J A, Bothwell S G, et al. Effects of natural enemy biodiversity on the suppression of arthropod herbivores in terrestrial ecosystems[J]. Annual of Review of Ecology, Evolution and Systematics, 2009, 40:573-592. [53] Onzo A, Bello I A, Hanna R. Effects of the entomopathogenic fungus Neozygites tanajoae, and the predatory mite Typhlodromalus aripo, on cassava green mite densities:screenhouse experiments[J]. Biocontrol, 2013, 58(3):397-405. [54] 吴圣勇, 王鹏新, 张治科, 等. 捕食螨携带白僵菌孢子的能力及所携孢子的活性和毒力[J]. 中国农业科学, 2014, 47(20):3999-4006. [55] Berndt O, Meyhofer R, Poehling H M. The edaphic phase in the ontogenesis of Frankliniella occidentalis and comparison of Hypoaspis miles and Hypoaspis aculeifer as predators of soil-dwelling thrips stages[J]. Biological Control, 2004, 30(1):17-24. [56] Wu S Y, Gao Y L, Xu X N, et al. Evaluation of Stratiolaelaps scimitus and Neoseiulus barkeri for biological control of thrips on greenhouse cucumbers[J]. Biocontrol Science and Technology, 2014, 24(10):1110-1121. [57] Lee S J, Kim S, Kim J C, et al. Entomopathogenic Beauveria bassiana granules to control soil-dwelling stage of western flower thrips, Frankliniella occidentalis, (Thysanoptera:Thripidae)[J]. BioControl, 2017, 62(5):1-10. |
[1] | ZHENG Yu, DING Xueling, YAO Fengluan, LU Xuesong, ZUO Hui, HE Yuxian. Identification of Isaria fumosorosea FZ-01 and Evaluation of Its Bio-control Potential against Bemisia tabaci [J]. Chinese Journal Of Biological Control, 2019, 35(6): 876-883. |
[2] | ZHENG Yaqiang, CHEN Bin, ZHAO Yongxin, XU Tianmei, SU Zaotang, ZHANG Lingying, PHANGTHAVONG Souksamone, LOINHEUANG Chanhom, LI Yifei, XIAO Guanli. Distribution and Occurrence of Isaria tenuipes in Different Habitats of Xishuangbanna Nature Reserve [J]. journal1, 2019, 35(3): 390-398. |
[3] | WANG Lei, LU Yongyue, XU Yijuan, ZENG Ling. Compatibility of Metarhizium spp. with Eight Pesticides Used in the Control of Solenopsis invicta [J]. journal1, 2016, 32(2): 172-179. |
[4] | HUANG Jianhua, CHEN Hongfan, WANG Lisi, LIU Anfeng, SHEN Huaxi. Advances in Controlling Thrips Using Predatory Mites [J]. journal1, 2016, 32(1): 119-124. |
[5] | HOU Mingming, LIU Yihao, WANG Bin. Laboratory Assessment on Virulence of Entomogenous Fungi against Stephanitis nashi [J]. journal1, 2015, 31(6): 853-859. |
[6] | ZHOU Jie, ZHANG Yanjun, XIE Ming, JIA Kaizhi. Improved DNA Extraction of Verticillium lecanii in Soil and Its Application [J]. , 2014, 30(6): 828-833. |
[7] | DAI Xiaoyan, REN Suli, ZHOU Yating, REN Shunxiang, QIU Baoli. Advances in Biological Control of Citrus Psyllid Diaphorina citri, a Vector Insect of Citrus Huanglongbing Disease [J]. , 2014, 30(3): 414-419. |
[8] | NONG Xiangqun, ZHANG Zehua. Ecological Adaptability of Entomopathogenic Fungi and Strategy for Biocontrol Application [J]. , 2013, 29(1): 133-141. |
[9] | ZHAO Haiming1, TANG Liangde2, HU Meiying1, GENG Peng1, AN Guodong1. Research Progresses on Pesticides Resistance of Predatory Mites [J]. , 2012, 28(2): 282-288. |
[10] | FAN Ji-qiao1, AN Xin-cheng2, XIA Jin-ming1, HU Qiong-bo1. Bioactivity of Soil-dwelling Entomopathogenic Fungi against Tessaratom apapillosa (Hemiptera: Pentatomidae) [J]. , 2011, 27(2): 197-201. |
[11] | MIAO Wen-Chao;ZHU Jing-Guo;ZHOU Ming-Ren;CHENG Wen-Hui;LI Ting-Bao;LU Hong . DEVELOPMENT OF A NEW MASS PRODUCTION PROCEDURE FOR BEAUVERLA BASSIANA CONIDIA [J]. , 1993, 9(1): 1-4. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||