[1] 杨春云, 邓渊钰, 李伟, 等. 小麦全蚀病生防细菌的筛选和鉴定[J]. 中国生物防治学报, 2018, 34(6):873-881. [2] Patil S V, Jayamohan N S, Kumudini B S. Strategic assessment of multiple plant growth promotion traits for shortlisting of fluorescent Pseudomonas spp. and seed priming against ragi blast disease[J]. Plant Growth Regulation, 2016, 80(1):1-12. [3] 唐佳频, 邵宗泽, 张智涛, 等. 南极土壤来源的恶臭假单胞菌1A00316抗南方根结线虫的机制[J]. 应用与环境生物学报, 2014, 20(6):1045-1051. [4] 郭丛, 杨金广, 申莉莉, 等. 一株对TMV具有显著拮抗活性的恶臭假单胞菌的筛选与鉴定[J]. 华南农业大学学报, 2011, 32(3):57-60. [5] Vassilev N, Vassileva M, Lopez A, et al. Unexploited potential of some biotechnological techniques for biofertilizer production and formulation[J]. Applied Microbiology and Biotechnology, 2015, 99(12):4983-4996. [6] 方运玲, 孙爽, 申阅, 等. 微生物源农药申嗪霉素的研制与应用[J]. 农药学学报, 2014, 16(4):387-393. [7] Ma L, Zhang H Y, Zhou X K, et al. Biological control tobacco bacterial wilt and black shank and root colonization by bio-organic fertilizer containing bacterium Pseudomonas aeruginosa NXHG29[J]. Applied Soil Ecology, 2018, 129:136-144. [8] 朱流红, 安启菲, 吴轶凡, 等. 烟草黑胫病菌对7种杀菌剂的敏感性[J]. 山地农业生物学报, 2016, 35(1):18-22. [9] 顾金刚, 方敦煌, 李天飞, 等. 两株荧光假单胞杆菌菌株对烟草黑胫病病原菌的抑制作用[J]. 中国生物防治, 2004, 23(1):76-78, 81. [10] Gómez-Lama Cabanás C, Legarda G, Ruano-Rosa D, et al. Indigenous Pseudomonas spp. strains from the olive (Olea europaea L.) rhizosphere as effective biocontrol agents against Verticillium dahliae:from the host roots to the bacterial genomes[J]. Frontiers in Microbiology, 2018, 9:277. [11] Redondo-nieto M, Barret M, Morrissey J, et al. Genome sequence reveals that Pseudomonas fluorescens F113 possesses a large and diverse array of systems for rhizosphere function and host interaction[J]. BMC Genomics, 2013, 14(54):1-17. [12] Jitendra Mishra, Naveen Kumar Arora. Secondary metabolites of fluorescent pseudomonads in biocontrol of phytopathogens for sustainable agriculture[J]. Applied Soil Ecology, 2018, 125:35-45. [13] Wallace R L, Hirkala D L, Nelson L M. Mechanisms of action of three isolates of Pseudomonas fluorescens active against postharvest grey mold decay of apple during commercial storage[J]. Biological Control, 2018, 117:13-20. [14] 魏海雷, 王烨, 张力群, 等. 生防菌株2P24与CPF-10的鉴定及其生防相关性状的初步分析[J]. 植物病理学报, 2004, 34(1):80-85. [15] 余贤美, 郑服丛. 嗜铁素在促进植物生长及病害防治等方面的应用[J]. 中国农学通报, 2007(8):507-510. [16] Kucey R M N, Janzen H H, Leggett M E. Microbially mediated increases in plant-available phosphorus[J]. Advances in Agronomy, 1989, 42:199-228. [17] 王欢, 王敬敬, 徐松, 等. 有机磷降解菌的筛选及其促生特性[J]. 微生物学报, 2017, 57(5):667-680. [18] 东秀珠, 蔡妙英. 常见细菌系统鉴定手册[M]. 北京:科学出版社, 2001. [19] 杨艺炜, 黎妍妍, 张安盛, 等. 烟草黑胫病拮抗菌XF10的筛选与鉴定[J]. 烟草科技, 2018, 51(4):20-27. [20] Roberts W K, Selitrennikoff C P. Plant and bacterial chitinases differ in antifungal activity[J]. Microbiology, 1988, 134(1):169-176. [21] Ghose T K. Measurement of cellulase activities[J]. Pure and Applied Chemistry, 1987, 59(2):257-268. [22] 王明江, 章如意, 林多多, 等. 棉花黄萎病不同抗性品种内生菌数量调查与拮抗菌筛选[J]. 江苏农业科学, 2010, 38(2):102-104. [23] 何碧珀, 郝学政, 刘红彦, 等. 解淀粉芽孢杆菌B10-26对芝麻的促生防病效果及其定殖能力分析[J]. 河南农业科学, 2018, 47(12):78-83. [24] Castric K F, Castric P A. Method for rapid detection of cyanogenic bacteria[J]. Applied and Environmental Microbiology, 1983, 45(2):701-702. [25] Prabhukarthikeyan S R, Keerthana U, Raguchander T. Antibiotic-producing Pseudomonas fluorescens mediates rhizome rot disease resistance and promotes plant growth in turmeric plants[J]. Microbiological Research, 2018, 210:65-73. [26] 李洪林. 荧光假单胞菌生防菌株的筛选及对烟草赤星病菌的抑制作用[D]. 大庆:黑龙江八一农垦大学, 2008. [27] 杨常娥, 鲁艳莉, 倪捍成, 等. 创伤弧菌产铁载体菌株的筛选及其诱导条件的响应面优化[J]. 食品工业科技, 2017, 38(3):159-165. [28] 杨顺, 杨婷, 林斌, 等. 两株溶磷真菌的筛选、鉴定及溶磷效果的评价[J]. 微生物学报, 2018, 58(2):264-273. [29] Patten C L, Glick B R. Role of Pseudomonas putida indoleacetic acid in development of the host plant root system[J]. Applied and Environmental Microbiology, 2002, 68(8):3795-3801. [30] 易龙, 马冠华, 肖崇刚. 烟草根黑腐病拮抗内生细菌的筛选及其抑菌作用[J]. 微生物学通报, 2012, 39(10):1464-1470. [31] 刘烈花. 4种生防菌对烟草黑胫病的防治作用[J]. 植物医生, 2018, 31(4):42-44. [32] 檀建新, 陈忠义, 张杰, 等. 产几丁质酶菌的分离鉴定及其抑菌作用的初步研究[J]. 植物保护, 2001, 27(2):1-3. [33] 金志雄, 周围, 王娅, 等. 内生枯草芽孢杆菌SWB8菌株β-1,3-1,4-葡聚糖酶的抗菌作用及细胞毒性[J]. 微生物学报, 2011, 51(11):1527-1537. [34] 蒋海霞, 周莲, 何亚文. 铜绿假单胞菌生防菌株抑菌代谢产物及其生防应用研究进展[J]. 微生物学通报, 2015, 42(7):1338-1349. [35] Souza J T D, Arnould C, Deulvot C, et al. Effect of 2, 4-diacetylphloroglucinol on Pythium:cellular responses and variation in sensitivity among propagules and species[J]. Phytopathology, 2003, 93(8):966-975. [36] GómezLama Cabanás C, Schilirò E, Valverdecorredor A, et al. The biocontrol endophytic bacterium Pseudomonas fluorescens PICF7 induces systemic defense responses in aerial tissues upon colonization of olive roots[J]. Frontiers in Microbiology, 2014, 5:427. [37] Voisard C, Keel C, Haas D, et al. Cyanide production by Pseudomonas fluorescens helps suppress black root rot of tobacco under gnotobiotic conditions[J]. EMBO Journal, 1989, 8(2):351-358. [38] 张琳, 陈彦宏, 王雪妍, 等. 三七植物内生细菌的促生作用[J]. 大连工业大学学报, 2018, 37(4):244-248. [39] Arya N, Rana A, Rajwar A, et al. Biocontrol efficacy of siderophore producing indigenous pseudomonas strains against Fusarium wilt in tomato[J]. National Academy Science Letters, 2018, 41(3):133-136. [40] 李静, 张金羽, 张琪, 等. 玉米根际无机磷溶解菌的筛选与促生特性[J/OL]. 应用与环境生物学报, 2019:1-11. [41] Rijavec T, Lapanje A. Hydrogen cyanide in the rhizosphere:not suppressing plant pathogens, but rather regulating availability of phosphate[J]. Front Microbiology, 2016, 7:1785. |