[1] Hummel A W, Wilkins K E, Wang L, et al. A transcription activator-like effector from Xanthomonas oryzae pv. oryzicola elicits dose-dependent resistance in rice[J]. Molecular Plant Pathology, 2016, 18(1):55-66. [2] Niñoliu D O, Ronald P C, Bogdanove A J. Xanthomonas oryzae pathovars:model pathogens of a model crop[J]. Molecular Plant Pathology, 2010, 7(5):303-324. [3] 周丽洪, 韩阳, 李淼, 等. 西南地区水稻细菌性条斑病菌链霉素抗性研究[J]. 云南农业大学学报, 2014, 29(5):654-660. [4] Idris E S E, Iglesias D J, Talon M, et al. Tryptophan-dependent production of indole-3-acetic acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42[J]. Molecular Plant-Microbe Interactions, 2007, 20(6):619. [5] 董国菊, 李文英, 刘翠平, 等. 烟草疫霉拮抗菌株P-72-10的鉴定及其拮抗代谢产物初步分析[J]. 植物病理学报, 2012, 42(3):297-305. [6] 彭兵, 张树斌, 贾宇, 等. 枯草芽孢杆菌菌株A抗菌蛋白的分离纯化及抗真菌机理[J]. 中国农业科学, 2011, 44(1):67-74. [7] Folman L B, Postma J, van Veen J A. Characterisation of Lysobacter enzymogenes (Christensen and Cook 1978) strain 3.1T8, a powerful antagonist of fungal diseases of cucumber[J]. Microbiological Research, 2003, 158(2):107-115. [8] Kobayashi D Yuen G. The potential of Lysobacter spp. as bacterial biological control agents for plant diseases[J]. CAB Review:Perspectives in Agriculture Veterinary Science Nutrition and Natural Resources, 2007, 2(7):1-11. [9] Luo C, Liu X, Zhou H, et al. Nonribosomal peptide synthase gene clusters for lipopeptide biosynthesis in Bacillus subtilis 916 and their phenotypic functions[J]. Applied and Environmental Microbiology, 2015, 81(1):422-431. [10] 张淼, 周立梅, 徐德阳, 等. 侧孢短芽孢杆菌BL-21抗菌蛋白的稳定性分析和分离纯化[J]. 中国农学通报, 2017, 33(15):43-48. [11] 李红晓, 张殿朋, 赵洪新, 等. 解淀粉芽胞杆菌MH71抗菌物质理化特性及对番茄灰霉病菌的抑菌活性[J]. 中国生物防治学报, 2016, 32(4):485-492. [12] Zhang R S, Liu Y F, Luo C P, et al. Bacillus amyloliquefaciens Lx-11, a potential biocontrol agent against rice bacterial leaf streak[J]. Journal of Plant Pathology, 2012, 94(3):609-619. [13] Jetiyanon K, Wei G, Tuzun S, et al. Induced systemic resistance (ISR) of cucumber by stem jection and seed treatment with PGPR[J]. Phytopathology, 1995, 85:114. [14] 陈志谊, 许志刚, 陆凡, 等. 拮抗细菌B-916对水稻植株的抗性诱导作用[J]. 西南农业学报, 2001, 14(2):44-48. [15] 李德全, 陈志谊, 聂亚锋. 生防菌Bs-916及高效突变菌株抗菌物质及其对水稻抗性诱导作用的研究[J]. 植物病理学报, 2008, 38(2):192-198. [16] 陈思宇. 水稻纹枯病菌拮抗细菌的筛选与防治作用研究[D]. 南京:南京农业大学, 2013. [17] 王卉, 尚庆茂, 张志刚, 等. 解淀粉芽孢杆菌L-H15产促生物质分析及发酵工艺优化[J]. 食品科学, 2017, 38(10):74-81. [18] 闫志宇, 翟蓓蓓, 李术娜, 等. 乙草胺降解菌L3的促生物质[J]. 江苏农业科学, 2017, 45(22):295-298. [19] 杨晓云, 陈志谊, 蒋盼盼, 等. 解淀粉芽孢杆菌B1619对番茄的促生作用[J]. 中国生物防治学报, 2016, 32(3):349-356. [20] Hyunsun K, Jin R D, Krishnan H B, et al. Biocontrol ability of Lysobacter antibioticus HS124 against Phytophthora blight is mediated by the production of 4-hydroxyphenylacetic acid and several lytic enzymes[J]. Current Microbiology, 2009, 59(6):608-615. [21] Lou L, Qian G, Xie Y, et al. Biosynthesis of HSAF, a tetramic acid-containing macrolactam from Lysobacter enzymogenes[J]. Journal of the American Chemical Society, 2011, 133(4):643-645. [22] 王皓楠, 靳鹏飞, 康迅, 等. 解淀粉芽孢杆菌HAB-6抑菌物质及其相关基因的分析[J]. 江苏农业科学, 2018, 46(4):79-83. [23] Zhao Y, Qian G, Ye Y, et al. Heterocyclic aromatic N-oxidation in the biosynthesis of phenazine antibiotics from Lysobacter antibioticus[J]. Organic Letters, 2016, 18(10):2495-2498. [24] Laborda P, Zhao Y, Ling J, et al. Production of antifungal p-aminobenzoic acid in Lysobacter antibioticus OH13[J]. Journal of Agricultural and Food Chemistry, 2018, 66(3):630. [25] Gardener M S, Kim I S, Kim K Y, et al. Draft genome sequence of a chitinase-producing biocontrol bacterium, Lysobacter antibioticus HS124[J]. Plant Disease, 2014, 20(3):216-218. |