[1] Larkin R P. Characterization of soil microbial communities under different potato cropping systems by microbial population dynamics, substrate utilization, and fatty acid profiles[J]. Soil Biology and Biochemistry, 2003, 35(11):1451-1466. [2] 马玲, 马琨, 杨桂丽, 等. 马铃薯连作栽培对土壤微生物多样性的影响[J]. 中国生态农业学报, 2015, 23(5):589-596. [3] 许光辉, 李振高. 微生物生态学[M]. 南京:东南大学出版社, 1991, 127-128. [4] 李喆, 元野, 马力, 等. 不同轮作方式对牡丹江地区烟田土壤微生物数量及分布的影响[J]. 东北林业大学学报, 2010, 38(7):96-99. [5] Lynch J M. The Rhizosphere[M]. Chichester:John Wiley & Sons, Ltd, 1990, 458. [6] Smith A P, Marin-Spiotta E, de Graaff M A, et al. Microbial community structure varies across soil organic matter aggregate pools during tropical land cover change[J]. Soil Biology & Biochemistry, 2014, 77:292-303. [7] 牛世全, 龙洋, 李海云, 等. 应用Illumina MiSeq高通量测序技术分析河西走廊地区盐碱土壤微生物多样性[J]. 微生物学通报, 2017, 44(9):2067-2078. [8] Kiely P D, Call D F, Yates M D, et al. Anodic biofilms in microbial fuel cells harbor low numbers of higher-power-producing bacteria than abundant genera[J]. Applied Microbiology and Biotechnology, 2010, 88(1):371-380. [9] Shokralla S, Spall J L, Gibson J F, et al. Next-generation sequencing technologies for environmental DNA research[J]. Molecular Ecology, 2012, 21(8):1794-1805. [10] 秦楠, 栗东芳, 杨瑞馥. 高通量测序技术及其在微生物学研究中的应用[J]. 微生物学报, 2011, 51(4):445-457. [11] 李庆岗, 陶立. 高通量测序技术及其在生命科学中的应用[J]. 畜牧与饲料科学, 2012, 33(2):25-28. [12] Gans J, Wolinsky M, Dunbar J. Computational improvements reveal great bacterial diversity and high metal toxicity in soil[J]. Science, 2005, 309(5739):1387-1390. [13] 史彩华. "日晒高温覆膜法"在韭蛆防治中的应用[J]. 中国蔬菜, 2017(7):90. [14] Yang C X, Liu W Z, He Z W, et al. Freezing/thawing pretreatment coupled with biological process of thermophilic Geobacillus sp. G1:acceleration on waste activated sludge hydrolysis and acidification[J]. Bioresource Technology, 2015, 175(1):509-516. [15] 朱琳, 黄建, 陈天阳, 等. 文冠果人工林根际土壤真菌和根系内生真菌群落多样性[J]. 东北林业大学学报, 2015, 43(5):105-111. [16] Caporaso J G, Kuczynski J, Stombaugh J, et al. QⅡME allows analysis of high-throughput community sequencing data[J]. Nature Methods, 2010, 7(5):335-336. [17] Kemp P F, Alle J Y. Bacterial diversity in aquatic and other environments:what 16S rDNA libraries can tell us[J]. FEMS Microbiology Ecology, 2004, 47(2):161-177. [18] Lu L, Xing D F, Ren N Q. Pyrosequencing reveals highly diverse microbial communities in microbial electrolysis cells involved in enhanced H2 production from waste activated sludge[J]. Water Research, 2012, 46(7):2425-2434. [19] 何芝, 赵天涛, 邢志林, 等. 典型生活垃圾填埋场覆盖土微生物群落分析[J]. 中国环境科学, 2015, 35(12):3744-3753. [20] Bardgett R D, Kandeler E, Tscherko D, et al. Belowground microbial community development in a high temperature world[J]. Oikos, 1999, 85(2):193-203. [21] Jones T H, Thompson L J, Lawton J H, et al. Impacts of rising atmospheric carbon dioxide on model terrestrial ecosystem[J]. Science, 1998, 280(5362):441- 443. [22] Christiane M, Morten M, Heribert I. Elevated CO2 alters community-level physiological profiles and enzyme activities in alpine grassland[J]. Journal of Microbiological Methods, 1999, 36(1-2):35- 43. [23] Hayden H L, Mele P M, Bougoure D S, et al. Changes in the microbial community structure of bacteria, archaea and fungi in response to elevated CO2 and warming in an Australian native grassland soil[J]. Environmental Microbiology, 2012, 14(12):3081-3096. [24] Spain A M, Krumholz L R. Elshahed M S. Abundance, composition, diversity and novelty of soil proteobacteria[J]. The ISME Journal, 2009, 3(8):992-1000. [25] Fierer N, Bradford M A, Jackson R B. Toward an ecological classification of soil bacteria[J]. Ecology, 2007, 88(6):1354-1364. [26] Yelle D J, Ralph J, Lu F C, et al. Evidence for cleavage of lignin by a brown rot basidiomycete[J]. Environmental Microbiology, 2008, 10(7):1844-1849. [27] 何苑皞, 周国英, 王圣洁, 等. 杉木人工林土壤真菌遗传多样性[J]. 生态学报, 2014, 34(10):2725-2736. [28] Frey S D, Knorr M, Parrent J L, et al. Chronic nitrogen enrichment affects the structure and function of the soil microbial community in temperate hardwood and pine forests[J]. Forest Ecology and Management, 2004, 196(1):159-171. [29] 高雪峰, 韩国栋, 张国刚. 短花针茅荒漠草原土壤微生物群落组成及结构[J]. 生态学报, 2017, 37(15):5129-5136. [30] Marilley L, Hartwig U A, Aragno M. Influence of an elevated atmospheric CO2 content on soil and rhizosphere bacterial communities beneath Lolium perenne, Trifolium repens under field conditions[J]. Microbial Ecology, 1999, 38(1):39-49. [31] Rinnan R, Michelsen A, Bääth E, et al. Fifteen years of climate change manipulations alter soil microbial communities in a subarctic heath ecosystem[J]. Global Change Biology, 2007, 13(1):28-39. [32] Bergner B, Johnstone J, Treseder K K. Experimental warming and burn severity alter soil CO2 flux and soil functional groups in a recently burned boreal forest[J]. Global Change Biology, 2004, 10(12):1996-2004. [33] Zhang W J, Xu Q, Wang X K, et al. Impacts of experimental atmospheric warming on soil microbial community structure in a tallgrass prairie[J]. Acta Ecologica Sinica, 2004, 24(8):1746-1751. [34] Robinson C H. Controls on decomposition and soil nitrogen availability at high beatitudes[J]. Plant & Soil, 2002, 242(1):65-81. |