Chinese Journal of Biological Control ›› 2023, Vol. 39 ›› Issue (3): 718-730.DOI: 10.16409/j.cnki.2095-039x.2023.05.004
• TECHNICAL REVIEWS • Previous Articles Next Articles
TANG Yanhong1,2, BI Siyan2, WANG Xiaodi2, MA Dongfang1, YANG Nianwan2,3, GUO Jianyang2, LÜ Zhichuang2, LIU Wanxue2
Received:
2022-01-17
Online:
2023-06-08
Published:
2023-06-25
CLC Number:
TANG Yanhong, BI Siyan, WANG Xiaodi, MA Dongfang, YANG Nianwan, GUO Jianyang, LÜ Zhichuang, LIU Wanxue. Visual System and Opsin in Insect[J]. Chinese Journal of Biological Control, 2023, 39(3): 718-730.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zgswfz.com.cn/EN/10.16409/j.cnki.2095-039x.2023.05.004
[1] 刘军和, 赵紫华. 昆虫视觉在寄主寻找及定位过程中的作用[J]. 植物保护学报, 2017, 44(3):353-362. [2] Yau K W, Hardie R C. Phototransduction motifs and variations[J]. Cell, 2009, 139(2):246-264. [3] 彩万志, 庞雄飞, 花保祯, 等. 普通昆虫学[M]. 北京:中国农业大学出版社, 2001, 254-256. [4] 段云, 吴仁海, 苗进, 等. 昆虫视蛋白的研究进展[J]. 植物保护, 2020, 46(1):93-100. [5] Helen A M, Whitmore D. Circadian rhythmicity and light sensitivity of the zebrafish brain[J]. The Public Library of Science, 2017, 9(1):e86176- e86176. [6] 许再福. 普通昆虫学[M]. 北京:科学出版社, 2009, 35-36. [7] Friedrich M, Wood E J, Wu M. Developmental evolution of the insect retina:insights from standardized numbering of homologous photoreceptors[J]. Journal of Experimental Zoology, Part B, Molecular and Developmental Evolution, 2011, 316(7):484-499. [8] Ogawa Y, Ribi W, Zeil J, et al. Regional differences in the preferred e-vector orientation of honeybee ocellar photoreceptors[J]. The Journal of Experimental Biology, 2017, 220:1701-1708. [9] Dyer A G, Arikawa K. A hundred years of color studies in insects:with thanks to Karl von Frisch and the workers he inspired[J]. Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology, 2014, 200(6):409-410. [10] Hempel de Ibarra N, Vorobyev M, Menzel R. Mechanisms, functions and ecology of colour vision in the honeybee[J]. Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology, 2014, 200(6):411-433. [11] Andres-Bragado L D, Sprecher S G. Mechanisms of vision in the Fruit fly[J]. Current Opinion in Insect Science, 2019, 36:25-32. [12] Eakin R. Evolution of photoreceptors[J]. Springer US, 1968, 30:363-370. [13] Westfall J A. Visual cells in evolution[J]. American Journal of Ophthalmology, 1982, 93(4):91-105. [14] Kooi C, Stavenga D G, Arikawa K, et al. Evolution of insect color vision:from spectral sensitivity to visual ecology[J]. Annual Review of Entomology, 2020, 66:435-461. [15] Fleur L, Claude D. Retinal perception and ecological significance of color vision in insects[J]. Current Opinion in Insect Science, 2017, 24:75-83. [16] Menzel R, Backhaus W. Color vision honey bees:phenomena and physiological mechanisms[M]. Springer Berlin Heidelberg, 1989, 281-291. [17] Spaethe J, Briscoe A D. Molecular characterization and expression of the UV opsin in bumblebees:three ommatidial subtypes in the retina and a new photoreceptor organ in the lamina[J]. The Journal of Experimental Biology, 2005, 208:2347-2361. [18] Chen P J, Arikawa K, Yang E C. Diversity of the photoreceptors and spectral opponency in the compound eye of the golden birdwing, Troides aeacus formosanus[J]. The Public Library of Science, 2013, 8(4):e62240-e62241. [19] Montell C. Drosophila visual transduction[J]. Trends in Neurosciences, 2012, 35(6):356-363. [20] Schnaitmann C, Pagni M, Reiff D F. Color vision in insects:insights from Drosophila[J]. Journal of Comparative Physiology, 2020, 206(2):183-198. [21] Kelber A. Ovipositing butterflies use a red receptor to see green[J]. Journal of Experimental Biology, 1999, 202(19):2619-2630. [22] Briscoe A D. Functional diversification of lepidopteran opsins following gene duplication[J]. Molecular Biology and Evolution, 2001, 18(12):2270-2279. [23] Poulton E B. The colours of animals:their meaning and use, especially considered in the case of insects[J]. Science, 1890, 16(407):286-286. [24] Finkbeiner S D, Briscoe A D, Reed R D. Warning signals are seductive:relative contributions of color and pattern to predator avoidance and mate attraction in Heliconius butterflies[J]. Evolution; International Journal of Organic Evolution, 2014, 68:3410-3420. [25] Bernard G D, Remington C L. Color vision in Lycaena butterflies:spectral tuning of receptor arrays in relation to behavioral ecology[J]. Proceedings of the National Academy of Sciences of the United States of America, 1991, 88(7):2783-2787. [26] Huang S C, Tsyr-Huei C, Justin M, et al. Spectral sensitivities and color signals in a polymorphic damselfly[J]. The Public Library of Science, 2014, 9(1):e87972-e87972. [27] Wernet M F, Mazzoni E O, Çelik A, et al. Stochastic spineless expression creates the retinal mosaic for colour vision[J]. Nature, 2006, 440(7081):174-180. [28] Backhaus W. Color opponent coding in the visual system of the honeybee[J]. Vision Research, 1991, 31:1381-1397. [29] Song B M, Lee C H. Toward a mechanistic understanding of color vision in insects[J]. Front Neural Circuits, 2018, 23(12):1662-5110. [30] Gao S, Takemura S, Ting C, et al. The neural substrate of spectral preference in Drosophila[J]. Neuron, 2008, 60(2):328-342. [31] Eakin R M. Evolution of photoreceptors[J]. Cold Spring Harbor Symposia on Quantitative Biology, 1965, 30:363-370. [32] Passamaneck Y J, Furchheim N, Hejnol A, et al. Ciliary photoreceptors in the cerebral eyes of a protostome larva[J]. EvoDevo, 2011, 2:6. [33] Provencio I, Cooper H M, Foster R G. Retinal projections in mice with inherited retinal degeneration:implications for circadian photoentrainment[J]. Journal of Comparative Neurology, 1998, 395(4):417-439. [34] Arendt D, Tessmar-Raible K, Snyman H, et al. Ciliary photoreceptors with a vertebrate-type opsin in an invertebrate brain[J]. Science, 2004, 306(5697):869-871. [35] 王卫杰, 刘新颖, 赵文爱, 等. 视蛋白[J]. 生命的化学, 2009, 29:440-443. [36] Yuan F, Bernard G, Le J, et al. Contrasting modes of evolution of the visual pigments in heliconius butterflies[J]. Molecular Biology and Evolution, 2010, 27:2392-2405. [37] Henze M J, Oakley T H. The dynamic evolutionary history of pancrustacean eyes and opsins[J]. Integrative and Comparative Biology, 2015, 55(5):830-842. [38] Imai H, Kojima D, Oura T, et al. Single amino acid residue as a functional determinant of rod and conevisualpigments[J]. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(6):2322-2326. [39] Kuwayama S, Imai H, Hirano T, et al. Conserved proline residue at position 189 in cone visual pigments as a determinant of molecular properties different from rhodopsins[J]. Biochemistry, 2002, 41(51):15245-15252. [40] Nakamura A, Kojima D, ImaHi, et al. Chimeric nature of pinopsin between rod and cone visual pigments[J]. Biochemistry, 1999, 38(45):14738-14745. [41] Takaoki K, Toshiyuki O, Tatsuya H, et al. Opsin-G11-mediated signaling pathway for photic entrainment of the chicken pineal circadian clock[J]. Journal of Neuroscience, 2002, 22(17):7321-7325. [42] Koyanagi M, Kawano E, Kinugawa Y, et al. Bistable UV pigment in the lamprey pineal[J]. Proceedings of the National Academy of Sciences, 2004, 101(17):6687-6691. [43] Adriana D, Briscoe L C. The evolution of colour vision in insects[J]. Annual Review of Entomology, 2001, 46(1):471-510. [44] Collantes-Alegre J M, Mattenberger F, Barberà M, et al. Characterisation, analysis of expression and localisation of the opsin gene repertoire from the perspective of photoperiodism in the aphid Acyrthosiphon pisum[J]. Insect Physiology, 2018, 104:48-59. [45] Yan S, Zhu J, Zhu W, et al. The expression of three opsin genes from the compound eye of Helicoverpa armigera (Lepidoptera:Noctuidae) is regulated by a circadian clock, light conditions and nutritional status[J]. The Public Library of Science One, 2014, 9(10):111-683. [46] Gartner W, Towner P. Invertebrate visual pigments[J]. Photochemistry and Photobiology, 1995, 62:1-16. [47] Vanin S, Bhutani S, Montelli S, et al. Unexpected features of Drosophila circadian behavioural rhythms under natural conditions[J]. Nature, 2012, 484:371-375. [48] Futahashi R. Color vision and color formation in dragonflies[J]. Current Opinion in Insect Science, 2016, 17:32-39. [49] Senthilan P R, Helfrich-Förster C. Rhodopsin 7——the unusual rhodopsin in Drosophila[J]. PeerJ, 2016, 4:24-27. [50] Papatsenko D, Sheng G, Desplan C, et al. A new rhodopsin in R8 photoreceptors of Drosophila:evidence for coordinate expression with Rh3 in R7 cells[J]. Development, 1997, 124:1665-1673. [51] Kirschfeld K, Feiler R, Franceschini N, et al. A photostable pigment within the rhabdomere of fly photoreceptors No. 7[J]. Journal of Comparative Physiology A. Neuroethology Sensory Neural and Behavioral Physiology, 1978, 125:275-284. [52] Chou W, Huber A, Bentrop J, et al. Patterning of the R7 and R8 cells of Drosophila:evidence for induced and default cell-fate specification[J]. Development, 1999, 126:607-610. [53] Stark W S, Thomas C F. Microscopy of multiple visual receptor types in Drosophila[J]. Molecular Vision, 2004, 10:943-955. [54] Dambly-Chaudière C, Leyns L. The determination of sense organs in Drosophila:a search for interacting genes[J]. Developmental Biology, 1992, 36:85-91. [55] Leyns L, Gómez-Skarmeta J L, Dambly-Chaudière C. Iroquois:a prepattern gene that controls the formation of bristles on the thorax of Drosophila[J]. Mechanisms of Development, 1996, 59:63-72. [56] Mazzoni E O, Celik A, Wernet M F, et al. Iroquois complex genes induce co-expression of rhodopsins in Drosophila[J]. PLoS Biology, 2008, 22, 6(4):e97. [58] Hu X, Leming M T, Whaley M A, et al. Rhodopsin coexpression in UV photoreceptors of Aedes aegypti and Anopheles gambiae mosquitoes[J]. Experimental Biology and Medicine, 2014, 217(6):1003-1008. [59] Mollereau B, Domingos P M. Photoreceptor differentiation in Drosophila:from immature neurons to functional photoreceptors[J]. Developmental Dynamics, 2005, 232(3):585-592. [60] Sondhi Y, Ellis E A, Bybee S M, et al. Light environment drives evolution of color vision genes in butterflies and moths[J]. Communications Biology, 2021, 4(1):177. [61] Feuda R, Marlétaz F, Bentley M A, et al. Conservation, duplication, and divergence of five opsin genes in insect evolution[J]. Genome Biology and Evolution, 2016, 8(3):579-587. [62] Kondrashov F A. Gene duplication as a mechanism of genomic adaptation to a changing environment[J]. Proceedings Biological Sciences, 2012, 279(1749):5048-5057. [63] Misof B, Liu S, Meusemann K, et al. Data from:Phylogenomics resolves the timing and pattern of insect evolution[J]. Alergia, 2014, 58(4):177-178. [64] Qian W, Zhang J. Genomic evidence for adaptation by gene duplication[J]. Genome Research, 2014, 24:1356-1362. [65] Han M V, Demuth J P, McGrath C L, et al. Adaptive evolution of young gene duplicates in mammals[J]. Genome Research, 2009, 19:859-867. [66] Jiang N, Bao Z, Zhang X, et al. Pack-MULE transposable elements mediate gene evolution in plants[J]. Nature, 2004, 431:569-573. [67] Kaessmann H. Origins, evolution, and phenotypic impact of new genes[J]. Genome Research, 2010, 20:1313-1326. [68] Kaessmann H, Vinckenbosch N, Long M. RNA-based gene duplication:mechanistic and evolutionary insights[J]. Nature Reviews Genetics, 2009, 10:19-31. [69] Briscoe A D. Six opsins from the butterfly Papilio glaucus:molecular phylogenetic evidence for paralogous origins of red-sensitive visual pigments in insects[J]. Journal of Molecular Evolution, 2000, 51:110-121. [70] Wang B, Xiao J H, Bian S N, et al. Evolution and expression plasticity of opsin genes in a fg pollinator, Ceratosolen solmsi[J]. Physiology & Behavior, 2013, 8:53-907. [71] Futahashi R, Kawahara-Miki R, Kinoshita M, et al. Extraordinary diversity of visual opsin genes in dragonfies[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112:1247-1256. [72] Lord N P, Plimpton R L, Sharkey C R, et al. A cure for the blues:opsin duplication and subfunctionalization for short-wavelengthsensitivity in jewel beetles (Coleoptera:Buprestidae)[J]. BMC Evolutionary Biology, 2016, 16:107. [73] Xu P, Feuda R, Lu B, et al. Functional opsin retrogene innocturnal moth[J]. Mobile DNA, 2016, 7:1-18. [74] Suvorov A, Jensen N O, Sharkey C R, et al. Opsins have evolved under the permanent heterozygote model:insights from phylotranscriptomics of Odonata[J]. Molecular Ecology, 2017, 26:1306-1322. [75] Sharkey C R, Fujimoto M S, Lord N P, et al. Overcoming the loss of blue sensitivity through opsin duplication in the largest animal group, beetles[J]. Scientific Reports, 2017, 7:8. [76] Briscoe A D. Intron splice sites of Papilio glaucus PglRh3 corroborate insectopsin phylogeny[J]. Gene, 1999, 230:101-109. [77] Bernard G D, Stavenga D G. Spectral sensitivities of retinular cells measured in intact living fies by an optical method[J]. Comparative Biochemistry and Physiology. Part A, Physiology, 1979, 134:95-107. [78] Salcedo E, Huber A, Henrich S, et al. Blue andgreen-absorbing visual pigments of Drosophila:ectopic expression and physiological characterization of the R8 photoreceptor cell-specifc Rh5 and Rh6 rhodopsins[J]. Neurosci, 1999, 19:10716-10726. [79] Jackowska M, Bao R, Liu Z, et al. Genomic andgene regulatory signatures of cryptozoic adaptation:loss of blue sensitive photoreceptors through expansion of long wavelength-opsin expression in the red four beetle Tribolium castaneum[J]. Frontiers in Zoology, 2007, 4(1):1-11. [80] Arikawa K. The eyes and vision of butterflies[J]. Journal of Physiology, 2017, 595(16):5457-5464. [81] Frentiu F D, Bernard G D, Cuevas C I, et al. Adaptive evolution of color vision as seen through the eyes of butterfies[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(S1):8634-8640. [82] Frentiu F D, Bernard G D, Sison-Mangus M P, et al. Gene duplication is an evolutionary mechanism for expanding spectral diversity in the long-wavelength photopigments of butterfies[J]. Molecular Biology and Evolution, 2007, 24:2016-2028. [83] Owens G L, Rennison D J. Evolutionary ecology of opsin gene sequence, expression and repertoire[J]. Molecular Ecology, 2017, 26(5):1207-1210. [84] Solomon S G, Lennie P. The machinery of colour vision[J]. Nature Revuews Neuroscience, 2007, 8(4):276-286. [85] Neitz J, Neitz M. The genetics of normal and defective color vision[J]. Vision Resarch, 2011, 51:633-651. [86] Yokoyama S, Shi Y. Genetics and evolution of ultraviolet vision in vertebrates[J]. FEBS Letters, 2000, 486:167-172. [87] Moore H A, Whitmore D. Circadian rhythmicity and light sensitivity of the zebrafish brain[J]. Physiology & Behavior, 2014, 65(3):465-472. [88] Cutler D, Bennett R, Stevenson R, et al. Feeding behavior in the nocturnal moth Manduca sexta is mediated mainly by blue receptors, but where are they located in the retina?[J]. The Journal of Experimental Biology, 1995, 198(9):1909-1917. [89] Hu X, Leming M T, Whaley M A, et al. Rhodopsin coexpression in UV photoreceptors of Aedes aegypti and Anopheles gambiae mosquitoes[J]. The Journal of Experimental Biology, 2014, 217(6):1003-1008. [90] Helfrich-Förster C, Winter C, Hofbauer A, et al. The circadian clock of fruit flies is blind after elimination of all known photoreceptors[J]. Neuron, 2001, 30:249-261. [91] Allada R, Chung B Y. Circadian organization of behavior and physiology in Drosophila[J]. Annual Review of Physiology, 2010, 72:605-624. [92] Tamaki S, Takemoto S, Uryu O, et al. Tomioka opsins are involved in nymphal photoperiodic responses in the cricket Modicogryllus siamensis Physiol[J]. Physiological Entomology, 2013, 38:163-172. [93] Froy O, Gotter A, L Casselman A, et al. Illuminating the circadian clock in monarch butterfly migration[J]. Science, 2003, 300:1303-1305. [94] Dixon A. Structure of aphid populations[J]. Annual Review of Entomology, 2003, 30(1):155-174. [95] Moran N. The evolution of aphid life cycles[J]. Annual Review of Entomology, 1992, 37:321-348. [96] Shen W L, Kwon Y, Adegbola A A, et al. Function of rhodopsin in temperature discrimination in Drosophila[J]. Science, 2011, 331:1333-1336. [97] Liu Y J, Yan S, Shen Z J, et al. The expression of three opsin genes and phototactic behavior of Spodoptera exigua (Lepidoptera:Noctuidae):evidence for visual function of opsin in phototaxis[J]. Insect Biochemistry and Molecular Biology, 2018, 96:27-35. [98] 马健皓, 杨现明, 梁革梅. 昆虫的趋光性与杀虫灯的应用[J]. 中国生物防治学报, 2019, 35(4):655-656. [99] Oh S, Lee C H, Lee S G, et al. Lee evaluation of high power light emitting diodes (HPLEDs) as potential attractants for adult Spodoptera exigua (Hübner) (Lepidoptera:Noctuidae)[J]. Journal of the Korean Society for Applied Biological Chemistry, 2011, 54:416-422. [100] Gühmann M, Jia H, Randel N, et al. Spectral tuning of phototaxis by a go-opsin in the rhabdomeric eyes of platynereis[J]. Current Biology, 2015, 25(17):2265-2271. [101] Zhang S, Kong X, Liu F, et al. Identification and expression patterns of opsin genes in a forest insect, Dendrolimus punctatus[J]. Insects, 2020,11(2):116. |
[1] | JIANG Yuan, YANG Zhongqi, WANG Xiaoyi, WEI Ke, ZHANG Yinan, LI Zhiqiang, WU Xiaoyun. Sequence Analysis on Genes Region from COⅡ to COⅢ in mtDNA of Several Sclerodermus Species in China for Biological Control [J]. journal1, 2016, 32(1): 1-12. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||