[1] Wang Y F, Chen J H, Bian W Y, et al. Control efficacy of salicylic acid microcapsules against postharvest blue mold in apple fruit[J]. Molecules, 2022, 27(22): 8108. [2] Dianiris L R, Nancy P K, Wayne M J. Penicillium expansum: biology, omics, and management tools for a global postharvest pathogen causing blue mould of pome fruit [J]. Molecular Plant Pathology, 2020, 21(11): 1391-1404. [3] Yang Q Y, Zhang H Y, Zhang X Y, et al. Phytic acid enhances biocontrol activity of Rhodotorula mucilaginosa against Penicillium expansum contamination and Patulin production in apples[J]. Frontiers in microbiology, 2015, 6: 1296. [4] 赖呈纯, 赖恭梯, 陈冰星, 等. 拮抗酵母菌的筛选鉴定、生物学特性及其对葡萄灰霉病菌的抑菌活性研究[J]. 中国生物防治学报, 2023, 39(3): 594-606. [5] Wang S P, Ruan C Q, Yi L H, et al. Biocontrol ability and action mechanism of Metschnikowia citriensis against Geotrichum citriaurantii causing sour rot of postharvest citrus fruit[J]. Food Microbiology, 2020, 87: 103375. [6] Cao J, Zhang H Y, Yang Q Y, et al. Efficacy of Pichia caribbica in controlling blue mold rot and patulin degradation in apples[J]. International Journal of Food Microbiology, 2013, 162(2): 167-173. [7] 肖金玮. γ-氨基丁酸诱导提高拟粉红锁掷孢Y16对葡萄采后病害生防效力及其机制研究[D]. 镇江: 江苏大学, 2022. [8] Calvo J, Calvente V, Orellano M E D, et al. Improvement in the biocontrol of postharvest diseases of apples with the use of yeast mixtures[J]. Biocontrol, 2003, 48(5): 579-593. [9] Wu Q, Ni M, Dou K, et al. 2018. Co-culture of Bacillus amyloliquefaciens ACCC11060 and Trichoderma asperellum GDFS1009 enhanced pathogen-inhibition and amino acid yield[J]. Microbial Cell Factories, 2018, 17(1): 155. [10] Wang Y, Li Y L, Xu W D, et al. Exploring the effect of β-glucan on the biocontrol activity of Cryptococcus podzolicus against postharvest decay of apples and the possible mechanisms involved[J]. Biocontrol, 2018, 121: 14-22. [11] He F T, Zhao L N, Zheng X F, et al. Investigating the effect of methyl jasmonate on the biocontrol activity of Meyerozyma guilliermondii against blue mold decay of apples and the possible mechanisms involved[J]. Physiological and Molecular Plant Pathology, 2020, 109: 101454. [12] 施俊凤, 薛梦林, 张晓宇, 等. 梅奇酵母XY201对冬枣采后病原真菌的抑制效果[J]. 中国生物防治, 2010, 26(3): 287-292. [13] Han J, Zhao L, Zhu H, et al. Study on the effect of alginate oligosaccharide combined with Meyerozyma guilliermondii against Penicillium expansum in pears and the possible mechanisms involved[J]. Physiological and Molecular Plant Pathology, 2021, 115: 101654. [14] 李磊, 陈发河, 吴光斌. 热激处理对冷藏“解放钟”枇杷果实木质化及相关酶活性的影响[J]. 食品科学, 2010, 31(16): 286-290. [15] Zhao Y, Tu K, Su J, et al. Heat treatment in combination with antagonistic yeast reduces diseases and elicits the active defense responses in harvested cherry tomato fruit[J]. Journal of Agricultural and Food Chemistry, 2009, 57(16): 7565-7570. [16] 张昱, 石玲, 张亚琳, 等. 2,4-表油菜素内酯结合氯化钙处理对采后杏果实黑斑病及苯丙烷代谢的影响[J]. 核农学报, 2022, 36(12): 2455-2461. [17] Yang Q Y, Zhang H Y, Zhang X Y, et al. Phytic acid enhances biocontrol activity of Rhodotorula mucilaginosa against Penicillium expansum contamination and patulin production in apples[J]. Frontiers in Microbiology, 2015, 6: 1296. [18] Zheng X F, Yang Q Y, Zhang H Y, et al. The possible mechanisms involved in degradation of Patulin by Pichia caribbica[J]. Toxins, 2016, 8(10): 289. [19] Fu Y, Yang Q Y, Solariraj D, et al. Biodegradation of mycotoxin patulin by the yeast Meyerozyma guilliermondii[J]. Biological Control, 2021, 160(12): 104692. [20] 王玲. 复合酵母菌M3-1抑菌效果及机理、制剂制备及在黄桃保鲜上的应用[D]. 镇江: 江苏大学, 2021. [21] Filonow A B. Role of competition for sugars by yeasts in the biocontrol of gray mold of apple[J]. Biocontrol Science and Technology, 1998, 8(2): 243-256. [22] Sharma R R, Singh D, Singh R. Biological control of postharvest diseases of fruits and vegetables by microbial antagonists: a review[J]. Biological Control, 2009, 50(3): 205-221. [23] 尚军, 吴旺泽, 马永贵. 植物苯丙烷代谢途径[J]. 中国生物化学与分子生物学报, 2022, 38(11): 1467-1476. [24] Gacnik S, Veberic R, Marinovic S, et al. Effect of pre-harvest treatments with salicylic and methyl salicylic acid on the chemical profile and activity of some phenylpropanoid pathway related enzymes in apple leaves[J]. Scientia Horticulturae, 2021, 277: 109794. [25] Prabhukarthikeyan S R, Keerthana U, Raguchander T. Antibiotic-producing pseudomonas fluorescens mediates rhizome rot disease resistance and promotes plant growth in turmeric plants[J]. Microbiological Research, 2018, 210: 65-73. [26] 田登娟, 孔珊珊, 马电通, 等. 羧甲基壳聚糖诱导培养罗伦隐球酵母处理调控采后葡萄柚果实苯丙烷代谢及其抗青霉病作用[J]. 食品科学, 2023, 44(11): 1-9. [27] 陈燕玲, 岑光莉, 孙婷婷, 等. 植物几丁质酶和β-1,3-葡聚糖酶及其协同抗病性研究进展[J]. 农业生物技术学报, 2022, 30(7): 1394-1411. [28] Diao E, Wang J, Li X, et al. Effects of ozone processing on patulin, phenolic compounds and organic acids in apple juice[J]. Journal of Food Science and Technology, 2019, 56: 957-965. [29] Yang Q, Wang J, Zhang H, et al. Ochratoxin a is degraded by yarrowia lipolytica and generates non-toxic degradation products[J]. World Mycotoxin Journal, 2016, 9(2): 269-278. |