[1] James C. Global status of commercialized biotech/GM crops in 2017:Biotech crop adoption surges as economic benefits accumulate in 22 years//[M]. ISAAA Brief:NO. 53. Ithaca, NY:ISAAA. [2] Tian J C, Wang X P, Long L P, et al. Eliminating host-mediated effects demonstrates Bt maize producing Cry1F has no adverse effects on the parasitoid Cotesia marginiventris[J]. Transgenic Research, 2014, 23(2):257-264. [3] Edgerton M D, Fridgen J, Anderson J R, et al. Transgenic insect resistance traits increase corn yield and yield stability[J]. Nature Biotechnology, 2012, 30(6):493-496. [4] Carpenter J E. Peer-reviewed surveys indicate positive impact of commercialized GM crops[J]. Nature Biotechnology, 2010, 28(4):319-321. [5] Romeis J, Bartsch D, Bigler F, et al. Assessment of risk of insect-resistant transgenic crops to nontarget arthropods[J]. Nature Biotechnology, 2008, 26(2):203-208. [6] Li Y H, Peng Y F, Hallerman E M, et al. Biosafety management and commercial use of genetically modified crops in China[J]. Plant Cell Reports, 2014, 33(4):565-573. [7] 王园园, 李云河, 陈秀萍, 等. 抗虫转基因植物对非靶标节肢动物生态影响的研究进展[J]. 生物安全学报, 2011, 20(2):100-107. [8] Romeis J, Meissle M, Bigler F. Transgenic crops expressing Bacillus thuringiensis toxins and biological control[J]. Nature Biotechnology, 2006, 24(1):63-71. [9] Marvier M, McCreedy C, Regetz J, et al. A meta-analysis of effects of Bt cotton and maize on nontarget invertebrates[J]. Science, 2007, 316(5830):1475-1477. [10] Lövei G L, Andow D A, Arpaia S. Transgenic insecticidal crops and natural enemies:a detailed review of laboratory studies[J]. Environmental Entomology, 2009, 38(2):293-306. [11] Shelton A M, Naranjo S E, Romeis J, et al. Setting the record straight:a rebuttal to an erroneous analysis on transgenic insecticidal crops and natural enemies[J]. Transgenic Research, 2009, 18(3):317-322. [12] Shelton A M, Naranjo S E, Romeis J, et al. Appropriate analytical methods are necessary to assess nontarget effects of insecticidal proteins in GM Crops through meta-analysis (response to Andow et al. 2009)[J]. Environmental Entomology, 2009, 38(6):1533-1538. [13] Romeis J, Hellmich R L, Candolfi M P, et al. Recommendations for the design of laboratory studies on non-target arthropods for risk assessment of genetically engineered plants[J]. Transgenic Research, 2011, 20(1):1-22. [14] 张青玲, 李云河, 华红霞, 等. Bt水稻田重要非靶标节肢动物暴露于Cry2Aa蛋白的程度分析[J]. 应用生态学报, 2013, 24(6):1647-1651. [15] 刘爽, 王甦, 刘佰明, 等. 大草蛉幼虫对烟粉虱的捕食功能反应及捕食行为观察[J]. 中国农业科学, 2011, 44(6):1136-1145. [16] 王英丽, 魏纪珍, 张丽丽, 等. Cry1Ac和Cry2Ab蛋白对大草蛉生长发育及酶活力的影响[J]. 植物保护学报, 2014, 41(3):285-291. [17] 梁革梅, 谭维嘉, 郭予元. 人工饲养棉铃虫技术的改进[J]. 植物保护, 1999, 25(2):15-17. [18] Wei J Z, Guo Y Y, Liang G M, et al. Cross-resistance and interactions between Bt toxins Cry1Ac and Cry2Ab against the cotton bollworm[J]. Scientific Reports, 2015, 5:7714. [19] Wang Y Q, Wang Y D, Wang Z Y, et al. Genetic basis of Cry1F-resistance in a laboratory selected Asian corn borer strain and its cross-resistance to other Bacillus thuringiensis toxins[J]. PLoS ONE, 2016, 11(8):e0161189. [20] 陆宴辉, 吴孔明, 蔡晓明, 等. 利用四季豆饲养盲蝽的方法[J]. 植物保护学报, 2008, 35(3):215-219. [21] Li Y H, Romeis J, Wu K M, et al. Tier-1 assays for assessing the toxicity of insecticidal proteins produced by genetically engineered plants to non-target arthropods[J]. Insect Science, 2014, 21(2):125-134. [22] Li Y H, Hu L, Romeis J, et al. Use of an artificial diet system to study the toxicity of gut-active insecticidal compounds on larvae of the green lacewing Chrysoperla sinica[J]. Biological Control, 2014, 69(1):45-51. [23] Zhang X J, Li Y H, Romeis J, et al. Use of a pollen-based diet to expose the ladybird beetle Propylea japonica to insecticidal proteins[J]. PLoS ONE, 2014, 9(1):e85395. [24] 白树雄, 张洪刚, 葛星, 等. 转cry1F基因玉米花粉对腰带长体茧蜂存活和繁殖的影响[J]. 植物保护, 2011, 37(6):82-85. [25] Álvarez-Alfageme F, Bigler F, Romeis J. Laboratory toxicity studies demonstrate no adverse effects of Cry1Ab and Cry3Bb1 to larvae of Adalia bipunctata (Coleoptera:Coccinellidae):the importance of study design[J]. Transgenic Research, 2011, 20(3):467-479. [26] Schmidt J E, Braun C U, Whitehouse L P, et al. Effects of activated Bt transgene products (Cry1Ab, Cry3Bb) on immature stages of the ladybird Adalia bipunctata in laboratory ecotoxicity testing[J]. Archives of Environmental Contamination and Toxicology, 2009, 56:221-228. [27] Chen M, Zhao J Z, Shelton A M, et al. Impact of single-gene and dual-gene Bt broccoli on the herbivore Pieris rapae (Lepidoptera:Pieridae) and its pupal endoparasitoid Pteromalus puparum (Hymenoptera:Pteromalidae)[J]. Transgenic Research, 2008, 17:545-555. [28] Li Y H, Romeis J. Bt maize expressing Cry3Bb1 does not harm the spider mite, Tetranychus urticae, or its ladybird beetle predator, Stethorus punctillum[J]. Biological Control, 2010, 53(3):337-344. [29] Zhao M, Li Y H, Yuan X D, et al. Establishment of a dietary exposure assay for evaluating the toxicity of insecticidal compounds to Apolygus lucorum (Hemiptera:Miridae)[J]. Environmental Pollution, 2018, 237:414-423. |