[1] Mertz F P, Yao R C. Saccharopolyspora spinosa sp. nov. isolated from soil collected in a sugar mill rum still[J]. International Journal of Systematic Bacteriology, 1990, 40(1):34-39. [2] Thompson G D, Dutton R, Sparks T C. Spinosad-a case study:an example from a natural products discovery programme[J]. Pest Management Science, 2000, 56(8):696-702. [3] Sparks T C, Crouse G D, Durst G. Natural products as insecticides:the biology, biochemistry and quantitative structure-activity relationships of spinosyns and spinosoids[J]. Pest Management Science, 2001, 57:896-905. [4] Waldron C, Matsushima P, Rosteck P, et al. Cloning and analysis of the spinosad biosynthetic gene cluster of Saccharopolyspora spinosa[J]. Chemistry and Biology, 2001, 8:487-499. [5] Luo Y S, Kou X X, Ding X Z, et al. Promotion of spinosad biosynthesis by chromosomal integration of the vitreoscilla hemoglobin gene in Saccharopolyspora spinosa[J]. Science China Life Science, 2012, 55(2):172-180. [6] Schoonejans T, Staaij M V D. Spinosad, a new tool for insect control in vegetables cultivated in greenhouses[J]. Mededelingen, 2001, 66(2a):375-386. [7] 蔡恒, 王燕, 万红贵, 等. 刺糖多孢菌生产多杀菌素的研究进展[J]. 中国生物工程杂志, 2011, 31(2):124-129. [8] Kumada Y, Benson D R, Hillemann D, et a1. Evolution of the glutamine synthetase gene, one of the oldest existing and functioning genes[J]. Proe Natl Acad Sci USA, 1993, 90(8):3009-3013. [9] Streicher S L, Tyler B. Purification of glutamine sythetase from a variety of bacteria[J]. Journal of Bacteriology, 142(1):69-78. [10] Sampio M J, Rowell P, Stewart W D P. Purification and some properties of glutamlne sythetase from nitrogen fixingcyanobacteria Anabaena cylindrical and Nostocsp[J]. Journal of General Micmbiology, 1979, 111(1):181-191. [11] Stacey G, Van B C, Tabita F R. Nitrogen and ammonia assimilation in the cyanobacteria:regulation of glutamine synthetase[J]. Archives of Biochemistry and Biophysics, 1979, 194(2):457-467. [12] Stadtman E R, Ginsburg A. The glutamine synthetase of Escherichia coli:structure and control[J]. Enzymes, 1974, 10:755-807. [13] Prusiner S, Statman E R. The enzymes of glutamine metabolism[M]. New York:Academic, 1973. [14] Reitzer L, Magasanik B. Escherichia coli and Salmonella typhimurium:cellular and molecular biology[J]. American Society for Microbiology, 1987(1):302-320. [15] Kameya M, Arai H, Ishii M, et al. Purification and properties of glutamine synthetase from Hydrogenobacter thermophilus[J]. Journal of Bioscience and Bioengineering, 2006, 102(4):311-315. [16] Amon J, Titgemeyer F, Burkovski A. Common patterns-unique features:nitrogen metabolism and regulation in gram-positive bacteria[J]. Fems Microbiology Reviews, 2010, 34(4):588-605. [17] Tiffert Y, Supra P, Wurm R, et al. The Streptomyces coelicolor glnR regulon:identification of new glnR targets and evidence for a central role of glnR in nitrogen metabolism in actinomycetes[J]. Molecular Microbiology, 2008, 67(4):861-880. [18] Pullan S T, Chandra G, Bibb M J, et al. Genome-wide analysis of the role of glnR in Streptomyces venezuelae provides new insights into global nitrogen regulation in actinomycetes[J]. Bmc Genomics, 2011, 12(1):175. [19] Jeßberger N, Lu Y, Amon J, et al. Nitrogen starvation-induced transcriptome alterations and influence of transcription regulator mutants in Mycobacterium smegmatis[J]. Bmc Research Notes, 2013, 6(1):1-19. [20] He J M, Zhu H, Zheng G S, et al. Direct involvement of the master nitrogen metabolism regulator glnR in antibiotic biosynthesis in streptomyces[J]. Journal of Biological Chemistry, 2016, 291(51):26443-26454 [21] Qu S, Kang Q, Wu H, et al. Positive and negative regulation of glnR in validamycin A biosynthesis by binding to different loci in promoter region[J]. Applied Microbiology and Biotechnology, 2015, 99(11):4771-4783. [22] Rydzak T, Garcia D, Stevenson D M, et al. Deletion of type I glutamine synthetase deregulates nitrogen metabolism and increases ethanol production in Clostridium thermocellum[J]. Metabolic Engineering, 2017, 41:182-191. [23] Tiffert Y, Supra P, Wurm R, et al. The Streptomyces coelicolor glnR regulon:identification of new glnR targets and evidence for a central role of glnR in nitrogen metabolism in actinomycetes[J]. Molecular Microbiology, 2008, 67(4):861-880. [24] Tiffert Y, Franz-Wachtel M, Fladerer C, et al. Proteomic analysis of the glnR-mediated response to nitrogen limitation in Streptomyces coelicolor M145[J]. Applied Microbiology and Biotechnology, 2011, 89(4):1149-1159. [25] Yang Q, Ding X Z, Liu X, et al. Differential proteomic profiling reveals regulatory proteins and novel links between primary metabolism and spinosad production in Saccharopolyspora spinosa[J]. Microbial Cell Factories, 2014, 13(1):27. [26] Sambrook J, Fritsh E F, Maniatis T. Molecular Cloning:A laboratory manual[M]. New York:Cold Spring Harbor Laboratory, 2002. [27] Matsushima P, Broughton M C, Turner J R, et al. Conjugal transfer of cosmid DNA from Escherichia coli to Saccharopolyspora spinosa:effects of chromosomal insertions on macrolide A83543 production[J]. Gene, 1994, 146(1):39-45. [28] Kieser T, Bibb M J, Buttner M J, et al. Practical Streptomyces genetics[M]. Norwich:The John Innes Foundation, Colney, 2000, 161-211. [29] Swiercz J P, Nanji T, Gloyd M, et al. A novel nucleoid-associated protein specific to the actinobacteria[J]. Nucleic Acids Research, 2013, 41(7):4171-84. [30] 谢家仪, 董光军, 刘振英, 等. 扫描电镜的微生物样品制备方法[J]. 电子显微学报, 2006, 24(4):440. [31] Luo Y S, Ding X Z, Xia L Q, et al. Comparative proteomic analysis of Saccharopolyspora spinosa SP06081 and PR2 strains reveals the differentially expressed proteins correlated with the increase of spinosad yield[J]. Proteome Science, 2011, 9(1):40. [32] Yang Q, Ding X Z, Xia L Q, et al. Differential proteomic profiling reveals regulatory proteins and novel links between primary metabolism and spinosad production in Saccharopolyspora spinosa[J]. Microbial Cell Factories, 2014, 13(1):27. [33] You D, Wang M M, Ye B C. Acetyl-CoA synthetases of Saccharopolyspora erythraea are regulated by the nitrogen response regulator glnR at both transcriptional and post-translational levels[J]. Molecular Microbiology, 2017, 103(5):845-859. [34] Krysenko S, Okoniewski N, Kulik A, et al. Gamma-glutamyl polyamine synthetase glnA3 is involved in the first step of polyamine degradation pathway in Streptomyces coelicolor M145[J]. Frontiers in Microbiology, 2017, 8:726. [35] 郑强, 阮红, 徐志南, 等. 谷氨酰胺合成酶基因的过量表达有效提高谷氨酸棒杆菌中L-谷氨酰胺产量[J]. 浙江大学学报(理学版), 2008, 35(6):678-683. [36] Jankevics A, Merlo M E, de vries M, et al. Metabolomic analysis of a synthetic metabolic switch in Streptomyces coelicolor A3(2)[J]. Proteomics, 2011, 11(24):4622-4631. |