[1] Wiwiek H, Malek M, Surono S, et al. The effectiveness of a dark septate endophytic fungus, Cladophialophora chaetospira SK51, to mitigate strawberry Fusarium wilt disease and with growth promotion activities[J]. Frontiers in Microbiology, 2020, 11(1):585-595. [2] 冶福春, 马文林, 杨晓龙. 枯草芽胞杆菌Qh-618对燕麦叶斑病防治效果研究[J]. 中国生物防治学报, 2021, 37(4):785-795. [3] 张涛, 李雪艳, 杨红梅, 等. 4株拮抗细菌对棉花黄萎病的防治效果及机制[J]. 中国生物防治学报, 2018, 34(6):882-889. [4] 程欢欢, 余水, 姚伟伟, 等. 辣椒炭疽病生防芽胞杆菌的筛选及田间防效[J]. 河南农业大学学报, 2019, 53(4):568-573. [5] Liu C, Yin X H, Wang Q G, et al. Antagonistic activities of volatiles produced by two Bacillus strains against Monilinia fructicola in peach fruit[J]. Journal of the Science of Food and Agriculture, 2018, 98(15):5756-5763. [6] Singh S, Dikshit P K, Moholkar V S, et al. Purification and characterization of acidic cellulase from Bacillus amyloliquefaciens SS35 for hydrolyzing Parthenium hysterophorus biomass[J]. Environmental Progress and Sustainable Energy, 2015, 34(3):810-818. [7] 陈志谊, 刘永峰, 刘邮洲, 等. 植物病害生防芽胞杆菌研究进展[J]. 江苏农业学报, 2012, 28(5):999-1006. [8] James G, Bini C D, Jose S, et al. Bacillus as an aquaculture friendly microbe[J]. Aquaculture International, 2021, 29(1):323-353. [9] Mathurot C, Somporn C, Saisamorn L. Screening siderophore producing bacteria as potential biological control agent for fungal rice pathogens in Thailand[J]. World Journal of Microbiology and Biotechnology, 2009, 25(11):1919-1928. [10] Dietel K, Beator B, Budiharjo A, et al. Bacterial traits involved in colonization of arabidopsis thaliana roots by Bacillus amyloliquefaciens FZB42[J]. The Plant Pathology Journal, 2013, 29(1):59-66. [11] 马佳, 李颖, 胡栋, 等. 芽胞杆菌生物防治作用机理与应用研究进展[J]. 中国生物防治学报, 2018, 34(4):639-648. [12] Gao Z F, Zhang B J, Liu H P, et al. Identification of endophytic Bacillus velezensis ZSY-1 strain and antifungal activity of its volatile compounds against Alternaria solani and Botrytis cinerea[J]. Biological Control, 2017, 105(1):27-39. [13] Chen X H, Koumoutsi A, Scholz R, et al. Genome analysis of Bacillus amyloliquefaciens FZB42 reveals its potential for biocontrol of plant pathogens[J]. Journal of Biotechnology, 2008, 140(1-2):27-37. [14] Chen X H, Koumoutsi A, Scholz R, et al. More than anticipated-production of antibiotics and other secondary metabolites by Bacillus amyloliquefaciens FZB42[J]. Journal of Molecular Microbiology and Biotechnology, 2009, 16(1-2):14-24. [15] 要雅倩, 成娜娜, 李培根, 等. 解淀粉芽胞杆菌T-6的分离鉴定及抗病促生潜力[J]. 生物技术通报, 2020, 36(9):202-210. [16] 余水, 丁海霞, 罗玉英, 等. 解淀粉芽胞杆菌MT323生防机制初探[J]. 贵州农业科学, 2020, 48(1):59-62. [17] Ahmed K E, Sajeewa M, Mohammed A A, et al. Biocontrol potential of Bacillus amyloliquefaciens against Botrytis pelargonii and Alternaria alternata on Capsicum annuum[J]. Journal of Fungi, 2021, 7(6):472-472. [18] 赵卫松, 郭庆港, 张晓云, 等. 解淀粉芽胞杆菌PHODG36菌剂的研制及其对马铃薯黄萎病的防病增产效果[J].中国生物防治学报, 2020, 36(03):381-387. [19] Chowdhury S P, Dietel K, Randler M, et al. Effects of Bacillus amyloliquefaciens FZB42 on lettuce growth and health under pathogen pressure and its impact on the rhizosphere bacterial community[J]. PLoS ONE, 2013, 8(7):1-10. [20] 赵雨萌, 缪佩佩, 王旭东, 等. 解淀粉芽胞杆菌TR2对草莓土壤酶活性的影响与防病促生作用[J]. 中国生物防治学报, 2022, 38(2):495-501. [21] 乔欣蕾, 凡雪蕊, 霍晓毅, 等. 枯草芽胞杆菌拮抗尖孢镰刀菌的抑菌物质分析[J]. 农业生物技术学报, 2021, 29(10):1999-2007. [22] 赵卫松, 鹿秀云, 郭庆港, 等. 防治番茄灰霉病的枯草芽胞杆菌BAB-1粉尘剂研制[J]. 中国生物防治学报, 2018, 34(1):99-108. [23] 揣红运, 谢学文, 石延霞, 等. 枯草芽胞杆菌微粉剂的研制及其对黄瓜白粉病的防治效果[J]. 植物病理学报, 2019, 49(5):660-669. [24] 陈川雁, 王燕, 喻国辉, 等. 枯草芽胞杆菌R31影响巴西蕉根系活性氧产生及对枯萎病的防治效果[J]. 中国生物防治学报, 2017, 33(02):226-233. [25] 赵新贝, 王娟, 上官妮妮, 等. 番茄灰霉病生防细菌TD-7的鉴定, 发酵条件优化及其防治效果[J]. 中国生物防治学报, 2019, 35(2):226-239. [26] Choi T G, Maung C H, Lee D R, et al. Role of bacterial antagonists of fungal pathogens, Bacillus thuringiensis KYC and Bacillus velezensis CE100 in control of root-knot nematode, Meloidogyne incognita and subsequent growth promotion of tomato[J]. Biocontrol Science and Technology, 2020, 30(7):685-700. [27] 付莉媛. 北京地区草莓根腐病致病菌的分离鉴定及拮抗菌筛选[D]. 秦皇岛:河北科技师范学院, 2021. [28] 冯志敏. 生防芽胞杆菌的筛选及其对葡萄灰霉病的防控研究[D]. 秦皇岛:河北科技师范学院, 2019. [29] Barbosa L O, Lima J S, Magalhaes V C, et al. Compatibility and combination of selected bacterial antagonists in the biocontrol of sisal bole rot disease[J]. Biological Control, 2018, 63:595-605. [30] 胡桂林, 王德良, 张雪峰, 等. 用Biolog微生物自动分析系统鉴定大曲中地衣芽孢杆菌的研究[J].酿酒, 2007(6):32-33. [31] 顾春波, 史晓斌, 姜莉莉, 等. 草莓枯萎病菌对多菌灵的抗性及其抗性菌株生物学特性[J]. 植物保护学报, 2010, 37(3):266-272. [32] 陈秀娟, 陈卫平, 糜林, 等. 南方草莓叶面积计算方法的研究[J]. 中国农学通报, 2009, 25(14):190-193. [33] 石妞妞, 杜宜新, 阮宏椿, 等. 枯草芽胞杆菌T122F内生定殖及对香蕉枯萎病的防治效果[J]. 植物保护, 2015, 41(4):95-99,124. [34] 高毓晗, 李世东, 郭荣君. sfp基因转化增强了Bacillus subtilis 168的定殖能力和对黄瓜茎内枯萎病菌的抑制作用[J]. 中国生物防治学报, 2016, 32(01):76-85. [35] 王诗晗, 鲁琴, 鲍佳楠, 等. 向日葵枯萎病拮抗芽胞杆菌的筛选与生防评价[J]. 中国微生态学杂志, 2020, 32(01):6-10,16. [36] 王晓丽. 马铃薯枯萎病发生特点及防治措施的初步研究[D]. 呼和浩特:内蒙古农业大学, 2012. [37] 王璐瑶, 李兴东, 段天凤, 等. 解淀粉芽胞杆菌B1619防控设施番茄枯萎病田间使用技术研究与示范[J]. 中国生物防治学报, 2017, 33(4):512-518. [38] 王亚娇, 栗秋生, 纪莉景, 等. 一株西瓜枯萎病生防菌的鉴定与田间防效[J]. 微生物学通报, 2021, 48(6):1976-1984. [39] 陈燕红, 陈远凤, 黎永坚, 等. 一株香蕉枯萎病生防解淀粉芽胞杆菌的分离、鉴定及其拮抗物质研究[J].广东农业科学, 2013, 40(2):68-72. [40] 崔宁. 拮抗细菌的分离鉴定及其对苦瓜枯萎病生防潜力的研究[D]. 泰安:山东农业大学, 2017. [41] 丁建朋, 范瑛阁, 姚永生. 生防菌HFW217的鉴定及其对棉花枯萎病的防治效果[J]. 新疆农业科学, 2019, 56(03):498-508. |