[1] Xie J T, Wei D M, Jiang D H, et al. Characterization of debilitation-associated mycovirus infecting the plant-pathogenic fungus Sclerotinia sclerotiorum[J]. The Journal of General Virology, 2006, 87(1):241-249. [2] Xie J T, Xiao X Q, Fu Y P, et al. A novel mycovirus closely related to hypoviruses that infects the plant pathogenic fungus Sclerotinia sclerotiorum[J]. Virology, 2011, 418(1):49-56. [3] Hu Z J, Wu S S, Cheng J S, et al. Molecular characterization of two positive-strand RNA viruses co-infecting a hypovirulent strain of Sclerotinia sclerotiorum[J]. Virology, 2014,(464-465):450-459. [4] Xiao X Q, Cheng J S, Tang J H, et al. A novel partitivirus that confers hypovirulence on plant pathogenic fungi[J]. Virology, 2014, 88(17):10120-10133. [5] Xie J T, Ghabrial S A. Molecular characterization of two mitoviruses co-infecting a hypovirulent isolate of the plant pathogenic fungus Sclerotinia sclerotiorum[J]. Virology, 2012, 428(2):77-85. [6] Khalifa M E, Pearson M N. Molecular characterization of three mitoviruses co-infecting a hypovirulent isolate of Sclerotinia sclerotiorum fungus[J]. Virology, 2013, 441(1):22-30. [7] Mu F, Jia J C, Xue Y X, et al. Characterization of a novel botoulivirus isolated from the phytopathogenic fungus Sclerotinia sclerotiorum[J]. Archives of Virology, 2021, 166(10):2859-2863. [8] Azhar A, Mu F, Huang H, et al. A novel RNA virus related to sobemoviruses confers hypovirulence on the phytopathogenic fungus Sclerotinia sclerotiorum[J]. Viruses, 2019, 11(8):759. [9] Yu X, Li B P, Fu Y H, et al. A geminivirus-related DNA mycovirus that confers hypovirulence to a plant pathogenic fungus[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(18):8387-8392. [10] Anagnostakis S L. Biological control of chestnut blight[J]. Science, 1982, 215(4532):466-471. [11] Hillman B I, Halpern B T, Brown M P. A viral dsRNA element of the chestnut blight fungus with a distinct genetic organization[J]. Virology, 1994, 201(2):241-250. [12] Smart C D, Yuan W, Foglia R, et al. Cryphonectria hypovirus 3, a virus species in the family hypoviridae with a single open reading frame[J]. Virology, 1999, 265(1):66-73. [13] Linder-Basso D, Dynek J N, Hillman B I. Genome analysis of Cryphonectria hypovirus 4, the most common hypovirus species in North America[J]. Virology, 2005, 337(1):192-203. [14] Wang S C, Kondo H, Liu L, et al. A novel virus in the family Hypoviridae from the plant pathogenic fungus Fusarium graminearum[J]. Virus Research, 2013, 174(1):69-77. [15] Li P F, Zhang H L, Chen X G, et al. Molecular characterization of a novel hypovirus from the plant pathogenic fungus Fusarium graminearum[J]. Virology, 2015, 481:151-160. [16] Liu S, Xie J T, Cheng J S, et al. Fungal DNA virus infects a mycophagous insect and utilizes it as a transmission vector[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(45):12803-12808. [17] Allen T D, Nuss D L. Specific and common alterations in host gene transcript accumulation following infection of the chestnut blight fungus by mild and severe hypoviruses[J]. Journal of Virology, 2004, 78(8):4145-4155. [18] Wang S C, Li P F, Zhang J Z, et al. Generation of a high resolution map of sRNAs from Fusarium graminearum and analysis of responses to viral infection[J]. Scientific Reports, 2016, 6:26151. [19] Lee Marzano S Y, Neupane A, Domier L. Transcriptional and small RNA responses of the white mold fungus Sclerotinia sclerotiorum to infection by a virulence-attenuating hypovirus[J]. Viruses, 2018, 10(12):713. [20] Li H, Fu Y P, Jiang D H, et al. Down-regulation of Sclerotinia sclerotiorum gene expression in response to infection with Sclerotinia sclerotiorum debilitation-associated RNA virus[J]. Virus Research, 2008, 135(1):95-106. [21] Gao Z X, Wu J Y, Jiang D H, et al. ORF Ι of mycovirus SsNSRV-1 is associated with debilitating symptoms of Sclerotinia sclerotiorum[J]. Viruses, 2020, 12(4):456. [22] Wang J Z, Wang F Z, Feng Y J, et al. Comparative vesicle proteomics reveals selective regulation of protein expression in chestnut blight fungus by a hypovirus[J]. Journal of Proteomics, 2013, 78:221-230. [23] Lax C, Tahiri G, Patiño-Medina J A, et al. The evolutionary significance of RNAi in the fungal kingdom[J]. International Journal of Molecular Sciences, 2020, 21(24):9348. [24] Segers G C, Van Wezel R, Zhang X, et al. Hypovirus papain-like protease p29 suppresses RNA silencing in the natural fungal host and in a heterologous plant system[J]. Eukaryotic Cell, 2006, 5(6):896-904. [25] Yaegashi H, Shimizu T, Ito T, et al. Differential inductions of RNA silencing among encapsidated bouble-stranded RNA mycoviruses in the white root rot fungus Rosellinia necatrix[J]. Journal of Virology, 2016, 90(12):5677-5692. [26] Yu J, Park J Y, Heo J I, et al. The ORF2 protein of Fusarium graminearum virus 1 suppresses the transcription of FgDICER2 and FgAGO1 to limit host antiviral defences[J]. Molecular Plant Pathology, 2020, 21(2):230-243. [27] Aulia A, Hyodo K, Hisano S, et al. Identification of an RNA silencing suppressor encoded by a symptomless fungal hypovirus, Cryphonectria Hypovirus 4[J]. Biology, 2021, 10(2):100. [28] Andika I B, Jamal A, Kondo H, et al. SAGA complex mediates the transcriptional up-regulation of antiviral RNA silencing[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(17):3499-3506. [29] Sun Q, Choi G H, Nuss D L. A single Argonaute gene is required for induction of RNA silencing antiviral defense and promotes viral RNA recombination[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(42):17927-17932. [30] Yaegashi H, Yoshikawa N, Ito T, et al. A mycoreovirus suppresses RNA silencing in the white root rot fungus, Rosellinia necatrix[J]. Biology, Virology,2013, 444(1):409-416. [31] Park S M, Choi E S, Kim M J, et al. Characterization of HOG1 homologue, CpMK1, from Cryphonectria parasitica and evidence for hypovirus-mediated perturbation of its phosphorylation in response to hypertonic stress[J]. Molecular Microbiology, 2004, 51(5):1267-1277. [32] Choi E S, Chung H J, Kim M J, et al. Characterization of the ERK homologue CpMK2 from the chestnut blight fungus Cryphonectria parasitica[J]. Microbiology, 2005, 151(5):1349-1358. [33] Parsley T B, Chen B, Geletka L M, et al. Differential modulation of cellular signaling pathways by mild and severe hypovirus strains[J]. Eukaryotic Cell, 2002, 1(3):401-413. [34] Yu J H. Heterotrimeric G protein signaling and RGSs in Aspergillus nidulans[J]. Journal of Microbiology, 2006, 44(2):145-154. [35] Choi G H, Chen B, Nuss D L. Virus-mediated or transgenic suppression of a G-protein alpha subunit and attenuation of fungal virulence[J]. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92(1):305-309. [36] Ding F, Cheng J S, Fu Y P, et al. Early transcriptional response to DNA virus infection in Sclerotinia sclerotiorum[J]. Viruses, 2019, 11(3):278. [37] Wu S S, Cheng J, Fu Y, et al. Virus-mediated suppression of host non-self recognition facilitates horizontal transmission of heterologous viruses[J]. PLoS Pathogens, 2017, 13(3):1006234. [38] Qu Z, Fu Y P, Lin Y, et al. Transcriptional responses of Sclerotinia sclerotiorum to the infection by SsHADV-1[J]. Journal of Fungi, 2021, 7(7):493. [39] Wang J Z, Shi L M, He X P, Lu L, et al. Comparative secretome analysis reveals perturbation of host secretion pathways by a hypovirus[J]. Scientific Reports, 2016, 6(1):34308. [40] Anagnostakis S L. Biological control of chestnut blight[J]. Science, 1982, 215(4532):466-471. [41] 张林巧,高坤,邓清超,等.低毒病毒CHV1-CN280生防潜力的初步研究[J].中国生物防治学报, 2012, 28(1):80-86. [42] Krstin L, Katanić Z, Ježić M, et al. Biological control of chestnut blight in Croatia:an interaction between host sweet chestnut, its pathogen Cryphonectria parasitica and the biocontrol agent Cryphonectria hypovirus 1[J]. Pest Management Science, 2017, 73(3):582-589. [43] Xiong Q, Zhang L Q, Waletich J, et al. Characterization of the papain-like protease p29 of the hypovirus CHV1-CN280 in its natural host fungus Cryphonectria parasitica and nonhost fungus Magnaporthe oryzae[J]. Phytopathology, 2019, 109(5):736-747. [44] Yu X, Li B, Fu Y P, et al. Extracellular transmission of a DNA mycovirus and its use as a natural fungicide[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(4):1452-1457. [45] Mochama P, Jadhav P, Neupane A, et al. Mycoviruses as triggers and targets of RNA silencing in white mold fungus Sclerotinia sclerotiorum[J]. Viruses, 2018, 10(4):214. [46] 吴松松,郑丹,李波,等.核盘菌病毒与寄主互作的分子机制研究[C].中国菌物学会, 2017:14. [47] Zhang H X, Xie J T, Fu Y P, et al. A 2-kb mycovirus converts a pathogenic fungus into a beneficial endophyte for brassica protection and yield enhancement[J]. Molecular Plant, 2020, 13(10):1420-1433. [48] Qu Z, Zhao H H, Zhang H X, et al. Bio-priming with a hypovirulent phytopathogenic fungus enhances the connection and strength of microbial interaction network in rapeseed[J]. NPJ Biofilms and Microbiomes, 2020, 6(1):45. [49] Tian B N, Xie J T, Fu Y P, et al. A cosmopolitan fungal pathogen of dicots adopts an endophytic lifestyle on cereal crops and protects them from major fungal diseases[J]. The ISME Journal, 2020, 14(12):3120-3135. [50] Choi G H, Dawe A L, Churbanov A, et al. Molecular characterization of vegetative incompatibility genes that restrict hypovirus transmission in the chestnut blight fungus Cryphonectria parasitica[J]. Genetics, 2012, 190(1):113-127. [51] Hamid M R, Xie J, Wu S, et al. A novel deltaflexivirus that infects the plant fungal pathogen, Sclerotinia sclerotiorum, can be transmitted among host vegetative incompatible strains[J]. Viruses, 2018, 10(6):295. |