[1] 黄宇飞. 胡萝卜软腐果胶杆菌巴西亚种全基因组解析及致病相关基因功能研究[D].沈阳: 沈阳农业大学, 2019. [2] Meng X L, Chai A L, Shi Y X,et al. Emergence of bacterial soft rot in cucumber caused by Pectobacterium carotovorum subsp. brasilience in China[J]. Plant Disease, 2017, 101: 279-287. [3] Oulghazi S, Sarfraz S, Zaczek-moczydlowska M A, et al. Pectobacterium brasiliense: Genomics, host range and disease management[J]. Microorganisms, 2021, 9: 106. [4] 许蓬娟, 庞金安, 于志超. 黄瓜细菌性茎软腐病的致病机制及防治技术[J]. 中国瓜菜, 2019, 32(11): 106-107. [5] Motyka A, Zoledowska S, Sledz W, et al. Molecular methods as tools to control plant diseases caused by Dickeya and Pectobacterium spp: A minireview[J]. New Biotechnology, 2017, 39: 181-189. [6] Jung Y J, Kang K K. Application of antimicrobial peptides for disease control in plants[J]. Plant Breeding and Biotechnology, 2014, 2(1): 1-13. [7] Kraemer S A, Ramachandran A, Perron G G. Antibiotic pollution in the environment: From microbial ecology to public policy[J]. Microorganisms, 2019, 7(6): 180. [8] Charkowski A O. Biology and control of Pectobacterium in potato[J]. American Journal of Potato Research, 2015, 92: 223-229. [9] Alamer I S A, Tomah A A, Li B, et al. Isolation, identification and characterization of Rhizobacteria strains for biological control of bacterial wilt (Ralstonia solanacearum) of eggplant in China[J]. Agriculture, 2020, 10: 37. [10] Shi Y W, Yang L, Wang X Q, et al. Biocontrol of bacterial spot diseases of muskmelon using Paenibacillus polymyxa G-14[J]. African Journal of Biotechnology, 2012, 11(104): 16845-16851. [11] Mei L, Liang Y, Zhang L, et al. Induced systemic resistance and growth promotion in tomato by an indole-3-acetic acid-producing strain of Paenibacillus polymyxa[J]. Annals of Applied Biology, 2014, 165: 270-279. [12] Galea C A, Han M L, Zhu Y, et al. Characterization of the polymyxin D synthetase biosynthetic cluster and product profile of Paenibacillus polymyxa ATCC 10401[J]. Journal of Natural Products, 2017, 80: 1264-1274. [13] Hong S H, Anees M, Kim K Y. Biocontrol of Meloidogyne incognita inciting disease in tomato by using a mixed compost inoculated with Paenibacillus ehimensis RS820[J]. Biocontrol Science and Technology, 2013, 23(9): 1024-1039. [14] Naing K W, Anees M, Nguyen X H, et al. Biocontrol of late blight disease (Phytophthora capsici) of pepper and the plant growth promotion by Paenibacillus ehimensis KWN38[J]. Journal of Phytopathology, 2014, 162: 367-376. [15] Wang X H, Li Q, Sui J K, et al. Isolation and characterization of antagonistic bacteriaPaenibacillus jamilae HS-26 and their effects on plant growth[J]. BioMed Research International, 2019, 3638926. [16] Bosmans L, Bruijn I D, Gerards S,et al. Potential for biocontrol of hairy root disease by a Paenibacillus clade[J]. Frontiers in Microbiology, 2017, 8: 447. [17] Charalambous A, Tjamos S E, Domazakis E, et al. Incorporation into the transplant soil plug of the plant protective agent Paenibacillus alvei strain K165 confers protection to melon against Fusarium wilt[J]. BioControl, 2013, 58: 685-692. [18] Schoeman M H, Labuschagne N, Calitz F J. Efficacy of fungicides, plant resistance activators and biological control agents against guava wilt disease caused by Nalanthamala psidii[J]. South African Journal of Plant and Soil, 2017, 34(2): 119-124. [19] Sukweenadhi J, Balusamy S R, Kim Y J, et al. A growth-promoting bacteria, Paenibacillus yonginensis DCY84T enhanced salt stress tolerance by activating defense-related systems in Panax ginseng[J]. Frontiers in Plant Science, 2018, 9: 813. [20] Gao J L, Lv F Y, Wang X M, et al. Paenibacillus wenxiniae sp. nov., a nifH gene-harbouring endophytic bacterium isolated from maize[J]. Antonie van Leeuwenhoek, 2015, 108: 1015-1022. [21] Kim Y C, Hur J Y, Park S K. Biocontrol of Botrytis cinerea by chitin-based cultures of Paenibacillus elgii HOA73[J]. European Journal of Plant Pathology, 2019, 155: 253-263. [22] Dixit R, Agrawal L, Gupta S, et al. Southern blight disease of tomato control by 1-aminocyclopropane-1-carboxylate (ACC) deaminase producing Peanibacillus lentimorbus B-30488[J]. Plant Signaling and Behavior, 2016, 11(2): 1113363. [23] Kim A Y, Shahzad R, Kang S M, et al. Paenibacillus terrae AY-38 resistance against Botrytis cinerea in Solanum lycopersicum L. plants through defence hormones regulation[J]. Journal of Plant Interactions, 2017, 12(1): 244-253. [24] 郭田, 王刘庆, 廖美德. PS04菌株对水稻纹枯病的防效及对水稻2种防御性酶活性的诱导[J]. 西北农林科技大学学报(自然科学版), 2013, 41(6): 98-102. [25] Zhang Y Z, Ren J W, Wang W Z, et al. Siderophore and indolic acid production by Paenibacillus triticisoli BJ-18 and their plant growth-promoting and antimicrobe ability[J]. Peer J, 2020, 8: 9403. [26] Lapidot D, Dror R, Vered E, et al. Disease protection and growth promotion of potatoes (Solanum tuberosum L.) by Paenibacillus dendritiformis[J]. Plant Pathology, 2014, 64(3): 545-551. [27] Von Der Weid I, Alviano D S, Santos A L S, et al. Antimicrobial activity of Paenibacillus peoriae strain NRRL BD-62 against a broad spectrum of phytopathogenic bacteria and fungi[J]. Journal of Applied Microbiology, 2003, 95(5): 1143-1151. [28] Bahmani K, Hasanzadeh N, Harighi B, et al. Isolation and identification of endophytic bacteria from potato tissues and their effects as biological control agents against bacterial wilt[J]. Physiological and Molecular Plant Pathology, 2021, 116: 101692. [29] Jung T K, Kim J H, Song H G. Antifungal activity and plant growth promotion by rhizobacteria inhibiting growth of plant pathogenic fungi[J]. Korean Journal of Microbiology, 2012, 48(1): 16-21. [30] Stonier T. Agrobacterium tumefaciens Conn. II. Production of an antibiotic substance[J]. Journal of Bacteriology, 1960, 79(6): 889-898. [31] 李磊. 基于全基因组测序的黄瓜细菌性流胶病病原菌致病力和比较基因组分析[D]. 北京:中国农业科学院, 2018. [32] 东秀珠, 蔡妙英. 常见细菌系统鉴定手册[M]. 北京:科学出版社, 2001. [33] 熊凯琳. 黄瓜细菌性茎软腐病病原鉴定及其抗病品系的筛选[D]. 武汉:长江大学, 2018. [34] 张礼生, 陈红印. 生物防治作用物研发与应用的进展[J]. 中国生物防治学报, 2014, 30(5): 581-586. [35] 贺字典, 闫立英, 石延霞, 等. 产生ACC脱氨酶的PGPR种衣剂对黄瓜细菌性茎软腐病的防治效果[J]. 中国生物防治学报, 2017, 33(6): 817-825. [36] 王超, 郭坚华, 席运官, 等. 拮抗细菌在植物病害生物防治中应用的研究进展[J]. 江苏农业科学, 2017, 45(18): 1-6. [37] Heyndrickx M, Vandemeulebroecke K, Scheldeman P, et al. A polyphasic reassessment of the genus Paenibacillus, reclassification of Bacillus lautus (Nakamura 1984) as Paenibacilluslautus comb. nov. and of Bacillus peoriae (Montefusco etal. 1993) as Paenibacillus peoriae comb. nov., and emended descriptions of P. lautus and of P. peoriae[J]. International Journal of Systematic Bacteriology, 1996, 46(4): 988-1003. [38] Messa V R. Biocontrol by induced systemic resistance using plant growth promoting rhizobacteria[J]. Rhizosphere, 2021, 17: 100323. [39] 陈雅寒, 王颖, 汝冰露, 等. 皮尔瑞俄类芽胞杆菌BC-39对水稻白叶枯病的防治研究[J]. 杂交水稻, 2017, 32(2): 55-57. [40] 段军娜, 黄海, 罗晶, 等. 皮尔瑞俄类芽胞杆菌BC-39对番茄灰霉病的防治效果及防腐保鲜作用[J]. 植物保护学报, 2014, 41(1): 61-66. [41] 陈静, 李少梅, 许小玲, 等. 火龙果溃疡病菌拮抗细菌的鉴定和发酵培养基优化[J]. 热带农业科学, 2015, 35(10): 64-68,74. |