中国生物防治学报 ›› 2022, Vol. 38 ›› Issue (3): 739-747.DOI: 10.16409/j.cnki.2095-039x.2022.02.017
• 专题综述 • 上一篇
孟素玲, 田彦梅, 顾欣, 孙小涵, 王新谱
收稿日期:
2021-09-13
发布日期:
2022-06-20
通讯作者:
顾欣,教授,E-mail:guxin929@163.com。
作者简介:
孟素玲,硕士研究生,E-mail:mslkyd@163.com
基金资助:
MENG Suling, TIAN Yanmei, GU Xin, SUN Xiaohan, WANG Xinpu
Received:
2021-09-13
Published:
2022-06-20
摘要: 协同防病作用(Synergistic disease prevention,SDP)在生物防控中发挥着重要作用。生防木霉种类多样,作用机制复杂,其不同抑菌因素之间,及其与其他生物和非生物之间往往存在协同作用。本文在讨论木霉具有的竞争、重寄生、抗生、诱导系统抗性等多种生防作用机制的基础上,阐述了木霉与其他生物和非生物,包括微生物、化学药剂、营养物质等的SDP作用及其机制。生防木霉的SDP作用已有部分研究进展,其田间应用呈现出复杂性和有效性。建议对木霉SDP作用的微生物代谢机制、分子机制及其环境互作关系开展深入研究,为今后相关生物防治策略及技术优化提供借鉴与参考。
中图分类号:
孟素玲, 田彦梅, 顾欣, 孙小涵, 王新谱. 木霉的协同防病作用研究进展[J]. 中国生物防治学报, 2022, 38(3): 739-747.
MENG Suling, TIAN Yanmei, GU Xin, SUN Xiaohan, WANG Xinpu. Research Progress on Synergistic Disease Prevention by Trichoderma[J]. Chinese Journal of Biological Control, 2022, 38(3): 739-747.
[1] Liu Y, Khan R. Biological control of bacterial wilt in tomato through the metabolites produced by the biocontrol fungus, Trichoderma harzianum[J]. Egyptian Journal of Biological Pest Control, 2021, 31(1):351-359. [2] Gavali M T, Bansode S A, Bhale U N. Biological control of charcoal rot of jowar with the use of Trichoderma species[J]. Bioinfolet-A Quarterly Journal of Life Sciences, 2021, 18(1a):96-99. [3] Zhang Y, Tian C, Xiao J L, et al. Soil inoculation of Trichoderma asperellum M45a regulates rhizosphere microbes and triggers watermelon resistance to fusarium wilt[J]. AMB Express, 2020, 10(1):1-13. [4] Baazeem A, Almanea A, Manikandan P, et al. In vitro antibacterial, antifungal, nematocidal and growth promoting activities of Trichoderma hamatum FB10 and its secondary metabolites[J]. Journal of Fungi, 2021, 7(5):331. [5] 景芳, 张树武, 刘佳, 等. 长枝木霉T6生防菌剂发酵条件优化及其对辣椒立枯病的防治效果[J]. 中国生物防治学报, 2020, 36(1):113-124. [6] Ruangwong O U, Pornsuriya C, Pitija K, et al. Biocontrol mechanisms of Trichoderma koningiopsis PSU3-2 against postharvest anthracnose of chili pepper[J]. Journal of Fungi, 2021, 7(4):276. [7] Perveen K, Bokhari N A. Antagonistic activity of Trichoderma harzianum and Trichoderma viride isolated from soil of date palm field against Fusarium oxysporum[J]. African Journal of Microbiology Research, 2012, 6(13):3348-3353. [8] Shaigan S, Seraji A, Moghaddam S. Identification and investigation on antagonistic effect of Trichoderma spp. on tea seedlings white foot and root rot (Sclerotium rolfsii Sacc.) in vitro condition[J]. Pakistan Journal of Biological Sciences, 2008, 11(19):2346-2350. [9] Fuchs J G, Moënne-Loccoz Y, Défago G. Nonpathogenic Fusarium oxysporum strain Fo47 induces resistance to fusarium wilt in tomato[J]. Plant Disease, 1997, 81(5):492-496. [10] 邓勋, 宋小双, 尹大川, 等. 高效木霉菌株筛选及对针叶苗木立枯病的生防作用[J]. 吉林农业大学学报, 2013, 35(3):282-287, 294. [11] Nuangmek W, Aiduang W, Kumla J, et al. Evaluation of a newly identified endophytic fungus, Trichoderma phayaoense for plant growth promotion and biological control of gummy stem blight and wilt of muskmelon[J]. Frontiers in Microbiology, 2021, 12:634772. [12] Gajera H, Domadiya R, Patel S, et al. Molecular mechanism of Trichoderma as bio-control agents against phytopathogen system-a review[J]. Current Research in Microbiology and Biotechnology, 2013, 1:133-142. [13] Segarra G, Casanova E, Avilés M, et al. Trichoderma asperellum strain T34 controls fusarium wilt disease in tomato plants in soilless culture through competition for iron[J]. Microbial Ecology, 2010, 59(1):141-149. [14] Benítez, Tahía Rincón, Ana M. Limón, et al. Biocontrol mechanisms of Trichoderma strains[J]. International Microbiology, 2004, 7(4):249-260. [15] 孙冬梅, 杨谦, 张军政. 黄绿木霉诱变菌株对大豆根腐病镰刀菌的拮抗[J]. 大豆科学, 2005, 24(3):15-19. [16] 顾小龙, 陈巍, 蔡枫, 等. 配施木霉微生物肥对连作黄瓜的影响[J]. 土壤学报, 2016(5):1296-1305. [17] 孙虎, 杨丽荣, 全鑫, 等. 木霉生防机制及应用的研究进展[J]. 中国农学通报, 2011, 27(3):242-246. [18] Elad Y, Barak R, Chet I. Possible role of lectins in mycoparasitism[J]. Journal of Bacteriology, 1983, 154(3):1431-435. [19] SharmaV, Salwan R, Sharma P N. Differential response of extracellular proteases of Trichoderma harzianum against fungal phytopathogens[J]. Current Microbiology, 2016, 73(3):419-425. [20] Stappler E, Dattenböck C, Tisch D, et al. Analysis of light- and carbon-specific transcriptomes implicates a class of G-protein-coupled receptors in cellulose sensing[J]. Msphere, 2017, 2(3):e00089-17. [21] 杨萍, 杨谦. 木霉重寄生过程分子机制的研究进展[J]. 中国农学通报, 2012, 28(27):163-166. [22] Mukherjee M, Mukherjee P K, Horwitz B A, et al. Trichoderma-plant-pathogen interactions:advances in genetics of biological control[J]. Indian Journal of Microbiology, 2012, 52(4):522-529. [23] Halifu S, Deng X, Song X S, et al. Inhibitory mechanism of Trichoderma virens ZT05 on Rhizoctonia solani[J]. Plants, 2020, 9(7):912. [24] 康彦平, 晏立英, 雷永, 等. 拟康宁木霉对花生菌核病的生防机制[J]. 中国油料作物学报, 2017, 39(6):842-847. [25] 屈海泳, 刘连妹, 王雪梅, 等. 木霉菌在生物防治上应用的研究进展[J]. 湖北农业科学, 2009, 48(3):743-746. [26] Wonglom P, Daengsuwan W, Ito S I, et al. Biological control of Sclerotium fruit rot of snake fruit and stem rot of lettuce by Trichoderma sp. T76-12/2 and the mechanisms involved[J]. Physiological & Molecular Plant Pathology, 2019, 107:1-7. [27] Singh S, Dureja P, Tanwar R S, et al. Production and antifungal activity of secondary metabolites of Trichoderma virens[J]. Pesticide Research Journal, 2005, 17(2):26-29. [28] Vinale F, Ghisalberti E L, Sivasithamparam K, et al. Factors affecting the production of Trichoderma harzianum secondary metabolites during the interaction with different plant pathogens[J]. Letters in Applied Microbiology, 2010, 48(6):705-711. [29] Shoresh M, Harman GE, MastouriF. Induced systemic resistance and plant responses to fungal biocontrol agents[J]. Annual Review of Phytopathology, 2010, 48:21-43. [30] Vinale F, Sivasithamparam K, Ghisalberti E, et al. Trichoderma-plant-pathogen interactions[J]. Soil Biology and Biochemistry, 2008, 40(1):1-10. [31] Baker S E, Perrone G, Richardson N M, et al. Phylogenomic analysis of polyketide synthase-encoding genes in Trichoderma[J]. Microbiology, 2012, 158(1):147-154. [32] 张晓梦, 田永强, 潘晓梅, 等. 2株木霉抑菌效果及其促植物生长机制[J]. 南方农业学报, 2020, 51(11):2713-2721. [33] Viterbo A, Harel M, Horwitz B A, et al. Trichoderma mitogen-activated protein kinase signaling is involved in induction of plant systemic resistance[J]. Applied and Environmental Microbiology, 2005, 71(10):6241-6246. [34] 王淑霞, 张丽萍, 黄亚丽, 等. 哈茨木霉Tr-92诱导黄瓜对灰霉病系统抗性的研究[J]. 中国生物防治学报, 2013, 29(2):242-247. [35] 刘佳, 张悦, 沈志彦, 等. 长枝木霉T6菌株对美洲南瓜枯萎病菌的抑制作用[J]. 西北农业学报, 2020, 29(12):1891-1897. [36] Lifshitz R, Windham M T, Baker R. Mechanism of biological control of preemergence damping-off of pea by seed treatment with Trichoderma spp.[J]. Phytopathology, 1986, 76(7):720-725. [37] 赵玳琳, 何海永, 吴石平, 等. 棘孢木霉GYSW-6m1对草莓炭疽病的生防机制及其防病促生作用研究[J]. 中国生物防治学报, 2020, 36(4):587-595. [38] Stockwell V O, Johnson K B, Sugar D, et al. Mechanistically compatible mixtures of bacterial antagonists improve biological control of fire blight of pear[J]. Phytopathology, 2011, 101(1):113-123. [39] Nonaka K, Abe T, Iwatsuki M, et al. Enhancement of metabolites productivity of Penicillium pinophilum FKI-5653, by co-culture with Trichoderma harzianum FKI-5655[J]. The Journal of Antibiotics, 2011, 64(12):769-774. [40] Netzker T, Fischer J, Weber J, et al. Microbial communication leading to the activation of silent fungal secondary metabolite gene clusters[J]. Frontiers in Microbiology, 2015, 6:299. [41] Li T T, Tang J Q, Valliappan K, et al. Co-culture of Trichoderma atroviride SG3403 and Bacillus subtilis 22 improves the production of antifungal secondary metabolites[J]. Biological Control, 2020, 140:104122. [42] Qiong W, Mi N, Kai D, et al. Co-culture of Bacillus amyloliquefaciens ACCC11060 and Trichoderma asperellum GDFS1009 enhanced pathogen-inhibition and amino acid yield[J]. Microbial Cell Factories, 2018, 17(1):155-167. [43] Hafiz F B, Moradtalab N, Goertz S, et al. Synergistic effects of a root-endophytic Trichoderma fungus and Bacillus on early root colonization and defence activation against Verticillium longisporum in rapeseed[J]. Molecular Plant-Microbe Interactions, 2022, 35(5):380-392. [44] Singh A, Jain A, Sarma B K, et al. Rhizosphere competent microbial consortium mediates rapid changes in phenolic profiles in chickpea during Sclerotium rolfsii infection[J]. Microbiological Research, 2014, 169(5):353-360. [45] 周游, 杨腊英, 汪军, 等. 枯草芽孢杆菌和绿色木霉协同促进芹菜生长的研究[J]. 中国土壤与肥料, 2020(2):213-219. [46] Jain A, Singh S, Sarma B K, et al. Microbial consortium-mediated reprogramming of defence network in pea to enhance tolerance against Sclerotinia sclerotiorum[J]. Journal of Applied Microbiology, 2012, 12(3):537- 550. [47] Karuppiah V, Vallikkannu M, Li T, et al. Simultaneous and sequential based co-fermentations of Trichoderma asperellum GDFS1009 and Bacillus amyloliquefaciens 1841:a strategy to enhance the gene expression and metabolites to improve the bio-control and plant growth promoting activity[J]. Microbial Cell Factories, 2019, 18(1):1-16. [48] 潘潇涵, 常瑞雪, 慕康国, 等. 哈茨木霉VT9-3r和枯草芽孢杆菌VT4-1x对3株马铃薯致病菌的抑制作用效果[J]. 中国农业大学学报, 2020, 25(4):72-81. [49] Chemeltorit P P, Mutaqin K H, Widodo W. Combining Trichoderma hamatum THSW13 and Pseudomonas aeruginosa BJ10-86:a synergistic chili pepper seed treatment for Phytophthora capsici infested soil[J]. European Journal of Plant Pathology, 2017, 147(1):157-166. [50] Shobha B, Lakshmeesha T R, Ansari M A, et al. Mycosynthesis of ZnO nanoparticles using Trichoderma spp. isolated from rhizosphere soils and its synergistic antibacterial effect against Xanthomonas oryzae pv. oryzae[J]. Journal of Fungi, 2020, 6(3):181. [51] Saxena A, Mishra S, Ray S, et al. Differential reprogramming of defense network in Capsicum annum L. plants against Colletotrichum truncatum infection by phyllospheric and rhizospheric Trichoderma strains[J]. Journal of Plant Growth Regulation, 2020, 39(2):751-763. [52] Cong Y, Fan H, Ma Q, et al. Mixed culture fermentation between Rhizopus nigricans and Trichoderma pseudokoningii to control cucumber Fusarium wilt[J]. Crop Protection, 2019, 124(2):104857. [53] 陈凯, 隋丽娜, 赵忠娟, 等.木霉共培养发酵对黄瓜枯萎病的防治效果[J]. 中国生物防治学报, 2022, 38(1):108-114. [54] Omomowo I O, Fadiji A E, Omomowo O I. Assessment of bio-efficacy of Glomus versiforme and Trichoderma harzianum in inhibiting powdery mildew disease and enhancing the growth of cowpea[J]. Annals of Agricultural Sciences, 2018, 63(1):9-17. [55] Mwangi M W, Monda E O, Okoth S A, et al. Inoculation of tomato seedlings with Trichoderma harzianum and arbuscular mycorrhizal fungi and their effect on growth and control of wilt in tomato seedlings[J]. Brazilian Journal of Microbiology, 2011, 42(2):508-513. [56] Li J H, Philp J, Li J S, et al.Trichoderma harzianum inoculation reduces the incidence of clubroot disease in Chinese cabbage by regulating the rhizosphere microbial community[J]. Microorganisms, 2020, 8(9):1325. [57] 康萍芝, 张丽荣, 沈瑞清, 等. 哈茨木霉制剂对设施连作番茄根际土壤微生物的生态效应及防病作用[J].农药, 2013, 52(2):128-131. [58] Shahriar S A, Islam M N, Chun C N W, et al. Microbial metabolomics interaction and ecological challenges of Trichoderma species as biocontrol inoculant in crop rhizosphere[J]. Agronomy, 2022, 12(4):900. [59] Gampala K, Pinnamaneni R. Studies on the compatibility of Trichoderma viride with certain agro-chemicals[J]. Current World Environment, 2010, 5(1):155. [60] Elad Y. Biological control of grape grey mould by Trichoderma arzianum[J]. Crop Protection, 1994, 13(1):35-38. [61] Wu Q, Zhang L, Xia H, et al. Omics for understanding synergistic action of validamycin A and Trichoderma asperellum GDFS1009 against maize sheath blight pathogen[J]. Scietntific Reports, 2017, 7(1):95-102. [62] Wedajo B. Compatibility studies of fungicides with combination of Trichoderma species under in vitro conditions[J]. Virology Mycology, 2015, 4:149. [63] 牛芳胜, 马志强, 毕秋艳, 等. 不同作用机制杀菌剂对番茄灰霉病菌拮抗木霉菌的毒力测定[J]. 农药, 2012, 51(8):601-604. [64] Tripathi P, Singh P C, Mishra A, et al. Trichoderma:a potential bioremediator for environmental clean up[J]. Clean Technologies and Environmental Policy, 2013, 15(4):541-550. [65] Cocaign A, Bui L C, Silar P, et al. Biotransformation of Trichoderma spp. and their tolerance to aromatic amines, a major class of pollutants[J]. Applied and Environmental Microbiology, 2013, 79(15):4719-4726. [66] 李敏, 杨谦, 王疏, 等. 哈茨木霉与多菌灵复合使用对水稻苗期立枯病的防治[J]. 浙江大学学报(农业与生命科学版), 2009, 35(1):65-70. [67] 田连生, 陈菲. 木霉菌剂与多菌灵协同防治灰霉病试验[J]. 江苏农业科学, 2013, 41(12):132-133. [68] 燕嗣皇, 陆德清, 杨雨环. 三唑酮对木霉防治辣椒白绢病的协同作用[J]. 西南农业学报, 1998, 11(4):101-105. [69] 燕嗣皇, 陆德清, 廖国会. 木霉菌与三唑酮配合对西瓜生长的影响和对枯萎病的防效[J]. 西南农业学报, 2002, 15(2):65-68. [70] 庄敬华, 杨长城, 高增贵, 等. 几种常用土壤杀菌剂对木霉菌防治甜瓜枯萎病效果的影响[J]. 中国蔬菜, 2005(8):15-17. [71] Zhang C Y, Wang W W, Xue M, et al. The combination of a biocontrol agent Trichoderma asperellum SC012 and hymexazol reduces the effective fungicide dose to control Fusarium wilt in cowpea[J]. Journal of Fungi, 2021, 7(9):685. [72] Abd-El-Khair H, Elshahawy I E, Haggag H. Field application of Trichoderma spp. combined with thiophanate-methyl for controlling Fusarium solani and Fusarium oxysporum in dry bean[J]. Bulletin of the National Research Centre, 2019, 43(1):1-9. [73] 罗鑫, 于存. 拟康宁木霉Hailin产几丁质酶条件优化及其抑菌能力评价[J]. 中国植保导刊, 2019, 39(11):14-22. [74] 辛鑫, 刘磊, 潘江禹, 等. 绿色木霉H6对香蕉枯萎病的诱导抗性作用[J]. 广东农业科学, 2013, 40(7):83-85. [75] Dilbo C, Alemu M, Lencho A, et al. Integrated management of garlic white rot (Sclerotium cepivorum Berk) using some fungicides and antifungal Trichoderma species[J]. Journal of Plant Pathology & Microbiology, 2015, 6(1):1-9. [76] Sharma R, Joshi A, Dhaker R C. A brief review on mechanism of Trichoderma fungus use as biological control agents[J]. International Journal of Innovations in Bio-Sciences, 2012, 2(4):200-210. [77] Wang S Q, Jia M A, Wang M, et al. Combined application of Trichoderma harzianum SH2303 and difenoconazole-propiconazolein controlling southern corn leaf blight disease caused by Cochliobolus heterostrophus in maize[J]. Journal of Integrative Agriculture, 2019, 18(9):2063-2071. [78] 夏海, 吴琼, 陆志翔, 等. 有效霉素A对棘孢木霉的影响及协同防治玉米纹枯病作用[J]. 微生物学通报, 2018, 45(1):1-10. [79] Shigemoto R, Okuno T, Matsuura K. Effect of validamycin A on the activity of trehalase of Rhizoctonia solani and several sclerotial fungi[J]. Annals of the Phytopathological Society of Japan, 1989, 55(2):238-241. [80] Nagata T, Masuda K, Maeno S, et al. Synthesis and structure-activity study of fungicidal anilinopyrimidines leading to mepanipyrim (KIF-3535) as an anti-Botrytis agent[J]. Pest Management Science:Formerly Pesticide Science, 2004, 60(4):399-407. [81] Khirallah W, Mouden N, Selmaoui K, et al. Compatibility of Trichoderma spp. with some fungicides under in vitro conditions[J]. International Journal of Recent Scientific Research, 2016, 7(2):9060-9067. [82] 牛芳胜, 马志强, 毕秋艳. 哈茨木霉与啶酰菌胺互作对番茄灰霉病的增效作用评价[J]. 中国农学通报, 2013, 29(12):201-205. [83] María F G, Magdama F, Galarza L, et al. Evaluation of the sensitivity and synergistic effect of Trichoderma reesei and mancozeb to inhibit under in vitro conditions the growth of Fusarium oxysporum[J]. Communicative & Integrative Biology, 2020, 13(1):160-169. [84] Hefnawy M A, Omima A E, Nora M E F. Impact of the fungicide Rizolix T50% on the antagonistic activity of Trichoderma harzianum and Trichoderma koningii[J]. International Journal of Science and Research, 2014, 3(9):1767-1773. [85] 高增贵, 赵世波, 庄敬华, 等. 常用土壤杀菌剂和肥料对绿色木霉菌T23的影响[J]. 植物保护学报, 2008, 35(1):74-80. [86] 庄敬华, 高增贵, 刘限, 等. 营养元素对木霉菌防治甜瓜枯萎病效果的影响[J]. 植物保护学报, 2004, 31(4):359-364. [87] 郎剑锋, 刘起丽, 杨蕊, 等. 利用秸秆和肥料增殖木霉及对玉米茎基腐病的生物防治[J]. 玉米科学, 2019, 27(2):161-169. [88] 郑慧杰, 徐豪东, 王学良, 等. 不同生物质材料对蕉园土壤有机质组成的影响[J]. 中国土壤与肥料, 2019, (3):36-41. [89] 包建平, 袁根生, 董方圆, 等. 生物质炭与秸秆施用对红壤有机碳组分和微生物活性的影响[J]. 土壤学报, 2020, 57(3):721-729. [90] Liu L J, Sun C L, Liu X X, et al. Effect of calcium cyanamide, ammonium bicarbonate and lime mixture, and ammonia water on survival of Ralstonia solanacearum and microbial community[J]. Scientific Reports, 2016, 6(1):267-279. [91] 谷祖敏, 周飞, 毕卉, 等. 香菇菌糠对绿色木霉防治黄瓜枯萎病的增效作用[J]. 植物保护学报, 2015, 41(6):212-216. [92] 郭成瑾, 沈瑞清, 张丽荣, 等. 哈茨木霉协同秸秤对马铃薯黑痣病及根际土壤微生态的影响[J]. 核农学报, 2020, 34(7):1447-1455. [93] Khattabi N, Ezzahiri B, Louali L, et al. Effect of nitrogen fertilizers and Trichoderma harzianum on Sclerotium rolfsii[J]. Agronomie, 2004, 24(5):281-288. |
[1] | 姚博, 张晋豪, 何依璐, 梁旭清, 崔兴国, 荣浪飞, 周星海, 魏方俊, 何祖雷, 姬广海, 魏兰芳. 解淀粉芽胞杆菌JK10防治蓝莓根癌病的机理研究[J]. 中国生物防治学报, 2022, 38(3): 613-625. |
[2] | 蒲丹丹, 李艳, 赵丽红, 张亚林, 魏锋, 冯鸿杰, 朱荷琴, 顾爱星, 彭军, 冯自力. 简青霉CEF-818固体发酵工艺优化[J]. 中国生物防治学报, 2022, 38(3): 636-644. |
[3] | 宋新娜, 梅凤珍, 李香风, 朱英波, 史凤玉, 刘建斌. 草莓枯萎病拮抗细菌的筛选及其防治效果[J]. 中国生物防治学报, 2022, 38(3): 653-661. |
[4] | 郑雅楠, 张彦龙, 时勇, 范立淳, 李洋. 肿腿蜂对云杉花墨天牛防治效果的初步研究[J]. 中国生物防治学报, 2022, 38(2): 306-311. |
[5] | 李蕾, 张雷, 赵宗祥, 王梦茹, 李世广. 黄绿绿僵菌与反式茴香脑的相容性及其对菜青虫的联合毒力[J]. 中国生物防治学报, 2022, 38(2): 349-359. |
[6] | 付莉媛, 蔡瑞杰, 冯志敏, 宋新娜, 朱英波, 史凤玉, 刘建斌. 葡萄灰霉病生防芽胞杆菌的筛选与防效评价[J]. 中国生物防治学报, 2022, 38(2): 440-446. |
[7] | 苗成琪, 赵延存, 包艳, 凌军, 刘嘉钰, 李朝辉, 刘凤权. 高地芽胞杆菌ST15的筛选、鉴定及生防特性研究[J]. 中国生物防治学报, 2022, 38(2): 458-468. |
[8] | 赵昱榕, 谢学文, 许帅, 谢华, 石延霞, 柴阿丽, 李磊, 李宝聚. 皮尔瑞俄类芽胞杆菌ZF390对黄瓜细菌性软腐病的防治效果[J]. 中国生物防治学报, 2022, 38(2): 476-486. |
[9] | 程茵, 郑吉阳, 王敦. 三株球孢白僵菌的分离鉴定与其对粘虫的室内毒力[J]. 中国生物防治学报, 2022, 38(2): 521-530. |
[10] | 王亚南, 李萍, 贺玮玮, 张茂森, 王孟卿, 毛建军, 张礼生, 李玉艳. 丽草蛉三龄幼虫对斜纹夜蛾卵及低龄幼虫的捕食作用[J]. 中国生物防治学报, 2022, 38(2): 321-327. |
[11] | 李红梅, 王珺雅, 卓富彦, 朱景全, 涂雄兵, 张国财, BELINDA Luke. 黄脊竹蝗在中国的发生及防控技术[J]. 中国生物防治学报, 2022, 38(2): 531-536. |
[12] | 马娟, 郭笑笑, 李秀花, 王容燕, 高波, 陈书龙. 不同品系昆虫病原线虫抗逆性分析[J]. 中国生物防治学报, 2022, 38(1): 188-195. |
[13] | 符振实, 唐思琼, 苏杰, 陈静, 张建萍. 三种杀虫(螨)剂对双尾新小绥螨捕食作用的影响[J]. 中国生物防治学报, 2022, 38(1): 42-49. |
[14] | 胡娴, 陈宸彤, 谢杨鋆, 何珊, 史红安, 张志林, 白翠华. 钩状木霉菌的生物学特性及对腐皮镰刀菌的抑菌机理研究[J]. 中国生物防治学报, 2022, 38(1): 81-87. |
[15] | 杨小龙, 石朝慧, 乔燚, 游钟浩, 顾钢, 林智慧, 周挺, 梁颁捷, 陈承亮, 刘国坤, 肖顺. 基于聚氨酯海绵载体的棘孢木霉固体发酵培养基筛选[J]. 中国生物防治学报, 2022, 38(1): 88-96. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 《中国生物防治学报》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发
技术支持:support@magtech.com.cn