[1] Zhang J, Tang Y, Huang J. The effects of temperature on the development, morphology, and fecundity of Aenasius bambawalei (=Aenasius arizonensis)[J]. Insects, 2021, 12(9): 833. [2] 罗丽林, 杨广明, 龙立炎, 等. 温度对大蜡螟生长发育和繁殖的影响[J]. 植物保护学报, 2022, 49(2): 644-653. [3] 王艳敏, 仵均祥, 万方浩. 昆虫对极端高低温胁迫的响应研究[J]. 环境昆虫学报, 2010, 32(2): 250-255. [4] Bale J S. Insects and low temperatures: from molecular biology to distributions and abundance[J]. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 2002, 357(1423): 849-862. [5] Sinclair B J, Vernon P, Klok C J, et al. Insects at low temperatures: an ecological perspective[J]. Trends in Ecology and Evolution, 2003, 18(5): 257-262. [6] Zhang J, Marshall K E, Westwood J T, et al. Divergent transcriptomic responses to repeated and single cold exposures in Drosophila melanogaster[J]. Journal of Experimental Biology, 2011, 214(23): 4021-4029. [7] Koštál V, Korbelová J, Rozsypal J, et al. Long-term cold acclimation extends survival time at 0 C and modifies the metabolomic profiles of the larvae of the fruit fly Drosophila melanogaster[J]. PLoS ONE, 2011, 6(9): e25025. [8] Nieminen P, Paakkonen T, Eerilä H, et al. Freezing tolerance and low molecular weight cryoprotectants in an invasive parasitic fly, the deer ked (Lipoptena cervi)[J]. Journal of Experimental Zoology Part A: Ecological Genetics and Physiology, 2012, 317(1): 1-8. [9] Wang H S, Kang L. Effect of cooling rates on the cold hardiness and cryoprotectant profiles of locust eggs[J]. Cryobiology, 2005, 51(2): 220-229. [10] Liu Z, Gong P, Wu K, et al. Effects of larval host plants on over-wintering preparedness and survival of the cotton bollworm, Helicoverpa armigera (Hübner)(Lepidoptera: Noctuidae)[J]. Journal of Insect Physiology, 2007, 53(10): 1016-1026. [11] 罗敏, 郭建英, 周忠实, 等. 短时低温胁迫对广聚萤叶甲发育和生殖的影响[J]. 昆虫学报, 2011, 54(1): 76-82. [12] 黄禹禹, 顾祥鹏, 彭孝琴, 等. 短时高低温胁迫对南亚实蝇生长发育及繁殖的影响[J]. 植物保护, 2021, 47(1): 135-142. [13] Askari Seyahooei M, Mohammadi-Rad A, Hesami S, et al. Temperature and exposure time in cold storage reshape parasitic performance of Habrobracon hebetor (Hymenoptera: Braconidae)[J]. Journal of Economic Entomology, 2018, 111(2): 564-569. [14] 殷山山, 钏相仙, 白燕冰, 等. 橡副珠蜡蚧生物学、生态学特性及防治研究现状及展望[J]. 热带农业科学, 2017, 37(3): 41-46. [15] 王倩, 符悦冠, 李磊, 等. 高温对橡副珠蜡蚧和副珠蜡蚧阔柄跳小蜂存活的影响[J]. 热带作物学报, 2017, 38(11): 2160. [16] 吴晓霜, 张方平, 符悦冠, 等. 日本食蚧蚜小蜂对寄主的龄期选择性[J]. 环境昆虫学报, 2018, 40(6): 1375-1379. [17] 吴晓霜, 牛黎明, 符悦冠, 等. 日本食蚧蚜小蜂对橡副珠蜡蚧的控制作用研究[J]. 应用昆虫学报, 2019, 56(2): 208-213. [18] 李贤, 符悦冠, 陈俊谕, 等. 温度及光周期对日本食蚧蚜小蜂发育与繁殖的影响[J]. 植物保护学报, 2021, 48(4): 848-854. [19] 刘月英, 罗进仓, 张大为, 等. 温度对黄芪根瘤象成虫繁殖与寿命的影响[J]. 植物保护, 2020, 46(6): 131-135. [20] Xing B, Yang L, Gulinuer A, et al. Effect of pupal cold storage on reproductive performance of Microplitis manilae (Hymenoptera: Braconidae), a larval parasitoid of Spodoptera frugiperda (Lepidoptera: Noctuidae)[J]. Insects, 2022, 13(5): 449. [21] 张方平, 朱俊洪, 韩冬银, 等. 低温对副珠蜡蚧阔柄跳小蜂发育及繁殖的影响[J]. 环境昆虫学报, 2015, 37(6): 1252-1256. [22] Mohamed H O, El-Heneidy A H. Effect of cold storage temperature on quality of the parasitoid, Trichogrammatoidea bactrae Nagaraja (Hymenoptera: Trichogrammatidae)[J]. Egyptian Journal of Biological Pest Control, 2020, 30(1): 1-13. [23] 李艳红, 成巨龙, 张南, 等. 高、低温处理对斜纹夜蛾生长发育、存活及耐寒性的影响[J]. 植物保护学报, 2014, 41(4): 501-508. [24] Jervis M A, Boggs C L, Ferns P N. Egg maturation strategy and its associated trade‐offs: a synthesis focusing on Lepidoptera[J]. Ecological Entomology, 2005, 30(4): 359-375. [25] 廖江花, 刘娟, 刘霞, 等. 短时低温对马铃薯甲虫种群增长的影响[J]. 昆虫学报, 2022, 65(1): 112-118. [26] 汪洁, 母银林, 杨灿, 等. 高、低温胁迫对草地贪夜蛾生长发育及抗寒性的影响[J]. 山地农业生物学报, 2022, 41(4): 18-25. [27] Kidane D, Ferrante M, Man X M, et al. Cold storage effects on fitness of the whitefly parasitoids Encarsia sophia and Eretmocerus hayati[J].Insects, 2020, 11(7): 428. [28] Ismail M, Van Baaren J, Hance T, et al. Stress intensity and fitness in the parasitoid Aphidius ervi (Hymenoptera: Braconidae): temperature below the development threshold combined with a fluctuating thermal regime is a must[J]. Ecological Entomology, 2013, 38(4): 355-363. [29] Kellermann V, van Heerwaarden B. Terrestrial insects and climate change: adaptive responses in key traits[J]. Physiological Entomology, 2019, 44(2): 99-115. [30] Huang Y, Gu X, Peng X, et al. Effect of short-term low temperature on the growth, development, and reproduction of Bactrocera tau (Diptera: Tephritidae) and Bactrocera cucurbitae[J]. Journal of Economic Entomology, 2020, 113(5): 2141-2149. [31] Yu C, Zhao R, Zhou W, et al. Fruit fly in a challenging environment: impact of short-term temperature stress on the survival, development, reproduction, and trehalose metabolism of Bactrocera dorsalis (Diptera: Tephritidae)[J]. Insects, 2022, 13(8): 753. [32] Colinet H, Hance T. Interspecific variation in the response to low temperature storage in different aphid parasitoids[J]. Annals of Applied Biology, 2010, 156(1): 147-156. [33] Colinet H, Lalouette L, Renault D. A model for the time–temperature–mortality relationship in the chill-susceptible beetle, Alphitobius diaperinus, exposed to fluctuating thermal regimes[J]. Journal of Thermal Biology, 2011, 36(7): 403-408. [34] 张方平, 朱俊洪, 韩冬银, 等. 橡副珠蜡蚧及其寄生蜂过冷却点的测定[J]. 环境昆虫学报, 2013, 35(6): 827-831. [35] 万婕, 阎伟, 刘丽, 等. 变温与持续低温冷暴露对红棕象甲成虫耐寒性的影响[J]. 植物保护, 2015, 41(4): 146-150. |