[1] Castle S J, Berger P H. Rates of growth and increase of Myzus persicae on virus infected potatoes according to type of virus-vector relationship[J]. Entomologia Experimentalis et Applicata, 1993, 69(1): 51-60. [2] Syller J. The effects of temperature on the availability and acquisition of potato leafroll luteovirus by Myzus persicae[J]. Annals of Applied Biology, 1994, 125(1): 141-145. [3] Xiao D, Yang T, Desneux N, et al. Assessment of sublethal and transgenerational effects of Pirimicarb on the wheat aphids Rhopalosiphum padi and Sitobion avenae[J]. PLoS ONE, 2015, 10(6): e0128936. [4] 李明桃. 桃蚜的生物学特性与防治措施[J]. 农业灾害研究, 2013, 3(2/3): 1-4. [5] 梁薇, 麻亚辉, 陈丽慧, 等. 寄主植物对植食性昆虫选择行为影响的研究进展[J]. 生物灾害科学, 2022, 45(3): 6. [6] 李姝, 王甦, 赵静, 等. 释放异色瓢虫对北京温室甜椒和圆茄上桃蚜的控害效果[J]. 植物保护学报, 2014, 41(6): 699-704. [7] 张帆, 李姝, 肖达, 等. 中国设施蔬菜害虫天敌昆虫应用研究进展[J]. 中国农业科学, 2015, 48(17): 3463-3476. [8] 雷仲仁, 吴圣勇, 王海鸿. 我国蔬菜害虫生物防治研究进展[J]. 植物保护, 2016, 42(1): 1-6, 25. [9] Prinsloo G J. Host and host instar preference of Aphelinus sp. nr. varipes (Hymenoptera: Aphelinidae), a parasitoid of cereal aphids (Homoptera: Aphididae) in South Africa[J]. African Entomology, 2000, 8(1):57-61. [10] Christiansen-Weniger P. Morphological observations on the preimaginal stages of Aphelinus varipes (Hym. Aphelinidae) and the effects of this parasitoid on the aphid Rhopalosiphum padi (Hom. Aphididae)[J]. Entomophaga, 1994, 39(3/4): 267-274. [11] Rhne O. Effect of temperature and host stage on performance of Aphelinus varipes Förster (Hym. Aphelinidae) parasitizing the cotton aphid, Aphis gossypii Glover (Hom. Aphididae)[J]. Journal of Applied Entomology, 2002, 126(10): 572-576. [12] Choi Y S, Hwang I S, Park D G et al. Effect of temperature at different performance stages of Aphelinus varipes (Wym. Aphelinidae) parasitizing the green peach aphid, Myzus persicae[J]. Korean Journal of Applied Entomology, 2012, 51(4): 343-348. [13] Riddick E W, Miller G L, Owen C L, et al. Discovery of Aphis ruborum (Hemiptera: Aphididae) and Aphelinus varipes (Hymenoptera: Aphelinidae) on cultivated strawberry in Mississippi, USA[J]. Journal of Insect Science, 2019, 19(3): 1-6. [14] van Lenteren J C, Roskam M M, Timmer R. Commercial mass production and pricing of organisms for biological control of pests in Europe[J]. Biological Control, 1997, 10(2): 143-149. [15] Strong K L. Electrophoretic analysis of two strains of Aphelinus varipes (Hymenoptera: Aphelinidae) for use in the biological control of the Russian wheat aphid, Diuraphis noxia (Mordwilko)[J]. Journal of the Australian Entomological Society, 1993, 32(1): 21-22. [16] Yashima K, Murai T. Development and reproduction of a potential biological control agent, Aphelinus varipes (Hymenoptera: Aphelinidae), at different temperatures[J]. Applied Entomology Zoology, 2012, 48(1): 21-26. [17] Ali M Y, Naseem T, Arshad M, et al. Host-plant variations affect the biotic potential, survival, and population projection of Myzus persicae (Hemiptera: Aphididae)[J]. Insects, 2021, 12(5): 1-13. [18] Nitsche N, Allan E, Zwöelfer H, et al. Plant diversity has contrasting effects on herbivore and parasitoid abundance in Centaurea jacea flower heads[J]. Ecology and Evolution, 2017, 7(22): 9319-9332. [19] Sarfraz M, Dosdall L M, Keddie B A. Host plant nutritional quality affects the performance of the parasitoid Diadegma insulare[J]. Biological Control, 2009, 51(1): 34-41. [20] Wink M. Chapter 11 importance of plant secondary metabolites for protection against insects and microbial infections[J]. Advances in Phytomedicine, 2006(3): 251-268. [21] 梅文娟, 姚凤銮, 林硕, 等. 日本刀角瓢虫对不同叶毛密度茄子品种的产卵选择性[J]. 昆虫学报, 2021, 64(9): 1092-1103. [22] 陈俊蓉, 闫诗谣, 曹丹丹, 等. 桃红颈天牛成虫的交配行为及对不同寄主植物的栖落和产卵选择性[J]. 昆虫学报, 2020, 63(7): 851-860. [23] 梅文娟, 林硕, 张前荣, 等. 日本刀角瓢虫对不同番茄品种的产卵选择性及其影响因素[J]. 昆虫学报, 2022, 65(6): 757-771. [24] Renou M, Nagnan P, Berthier A, et al. Identification of compounds from the eggs of Ostrinia nubilalis and Mamestra brassicae having kairomone activity on Trichogramma brassicae[J]. Entomologia Experimentalis et Applicata, 1992, 63(3): 291-303. [25] Almohamad R, Verheggen F J, Francis F, et al. Predatory hoverflies select their oviposition site according to aphid host plant and aphid species[J]. Entomologia Experimentalis et Applicata, 2007, 125(1): 13-21. [26] 方美娟, 罗智心, 何晓庆, 等. 混合蚜虫斑块对食蚜瘿蚊繁殖力的影响[J]. 中国生物防治学报, 2021, 37(4): 716-724. [27] Mansour M H. Some factors influencing egg laying and site of oviposition by Aphidoletes aphidimyza (Dipt.: Cecidomyiidae)[J]. BioControl, 1976, 21(3): 281-288. [28] 李明江, 羊绍武, 尚昊培, 等. 不同种植环境夏番茄上烟粉虱及其优势天敌的种群动态[J]. 中国生物防治学报, 2023, 39(1): 18-28. [29] Kishinevsky M, Keasar T, Bar-Massada A. Parasitoid abundance on plants: effects of host abundance, plant species, and plant flowering state[J]. Arthropod Plant Interactions, 2017, 11(2): 155-161. [30] Gripenberg S, Mayhew P J, Parnell M, et al. A meta-analysis of preference-performance relationships in phytophagous insects[J]. Ecology Letters, 2010, 13(3): 383-393. [31] 钦俊德, 王琛柱. 论昆虫与植物的相互作用和进化的关系[J]. 昆虫学报, 2001, 44(3): 360-365. [32] 沈嘉程, 廖为财, 罗鹏, 等. 桑天牛寄主选择及其与植物营养和次生代谢物质含量的相关性分析[J]. 江西农业大学学报, 2021, 43(4): 783-791. [33] Seagraves M P. Lady beetle oviposition behavior in response to the trophic environment[J]. Biological Control, 2009, 51(2): 313-322. [34] Yao F L, Lin S, Wang L X, et al. Oviposition preference and adult performance of the whitefly predator Serangium japonicum (Coleoptera: Coccinellidae): effect of leaf microstructure associated with ladybeetle attachment ability[J]. Pest Management Science, 2021, 77(1): 113-125. [35] Wheeler A G. Biology of the plant bugs (Hemiptera: Miridae): pests predators, opportunists[M]. Ithaca and London: Cornell University Press, 2001, 507. [36] Byrne D N, Draeger E A. Effect of plant maturity on oviposition and nymphal mortality of Bemisia tabaci (Homoptera: Aleyrodidae)[J]. Environmental Entomology, 1989(3): 429-432. [37] 成卫宁, 仵均祥, 李修炼, 等. 美洲斑潜蝇寄主抗虫性与寄主叶片化学物质和物理结构的关系[J]. 中山大学学报(自然科学版), 2006, 45(5): 71-75. [38] Chau A, Mackauer M. Host-instar selection in the aphid parasitoid Monoctonus paulensis (Hymenoptera: Braconidae: Aphidiinae): assessing costs and benefits[J]. Canadian Entomologist, 2001, 133(4): 549-564. [39] Wu G M, Barrette M, Boivin G, et al. Temperature influences the handling efficiency of an aphid parasitoid through body size-mediated effects[J]. Environmental Entomology, 2011, 40(3): 737-742. [40] Li B, Mills N. The influence of temperature on size as an indicator of host quality for the development of a solitary koinobiont parasitoid[J]. Entomologia Experimentalis et Applicata, 2004, 110(3): 249-256. [41] Chong J H, Oetting R D. Host stage selection of the mealybug parasitoid Anagyrus spec. nov near sinope[J]. Entomologia Experimentalis et Applicata, 2006, 121(1): 39-50. [42] Li L, Sun J. Host suitability of a gregarious parasitoid on beetle hosts: Flexibility between fitness of adult and offspring[J]. PLoS ONE, 2011, 6(4): e18563. [43] Liu Z, Xu B, Li L. Host-size mediated trade-off in a parasitoid Sclerodermus harmandi[J]. PLoS ONE, 2011, 6(8): e23260. [44] Wei K, Tang Y L, Wang X Y, et al. The developmental strategies and related profitability of an idiobiont ectoparasitoid Sclerodermus pupariae vary with host size[J]. Ecological Entomology, 2014, 39(1): 101-108. [45] 时敏, 唐璞, 王知知, 等. 中国寄生蜂研究及其在害虫生物防治中的应用[J]. 应用昆虫学报, 2020, 57(3): 491-548. [46] Marazzi C, Patrian B, Stdler E. Secondary metabolites of the leaf surface affected by sulfur fertilization and perceived by the diamondback moth[J]. Chemoecology, 2004, 14(2): 81-86. [47] Luquet M, Moulin C, Cortesero A M, et al. Early experience influences several steps of the host selection process differentially in Aphidius ervi (Hymenoptera, Braconidae)[J]. Journal of Asia-Pacific Entomology, 2020, 23(4): 1235-1240. [48] Watanabe H, Yano E, Higashida K, et al. An attractant of the aphidophagous gall midge Aphidoletes aphidimyza from honeydew of Aphis gossypii[J]. Journal of Chemical Ecology, 2016, 42(2): 149-155. [49] Yan Z G, Wang C Z. Identification of Mythmna separate induced maize volatile synomones that attract the parasitoid Campoletis chlorideae[J]. Journal of Applied Entomology, 2006, 130(4): 213-219. [50] Xiu C L, Dai W J, Pan H S, et al. Herbivore-induced plant volatiles enhance field-level parasitism of the mirid bug Apolygus lucorum[J]. Biological Control, 2019, 135: 41-47. [51] Lu Y J, Wang X, Lou Y G, et al. Role of ethylene signaling in the production of rice volatiles induced by the rice brown planthopper Nilaparvata lugens[J]. Chinese Science Bulletin, 2006, 51(20): 2457-2465. |