[1] 郝强, 黄倩, 梁炜博, 等. 不同温度下斜纹夜蛾的两性生命表[J]. 昆虫学报, 2016, 59(6): 654-662. [2] 贾世平, 曾维爱, 吴小森, 等. 斜纹夜蛾核型多角体病毒与赤眼蜂联用对斜纹夜蛾的室内防治效果[J]. 植物保护, 2022, 48(6): 307-312, 361. [3] 邹金城, 杨勇, 杨益众, 等. 斜纹夜蛾核型多角体病毒研究进展[J]. 中国生物防治学报, 2016, 32(6): 800-806. [4] 罗开珺, 张古忍, 古德祥, 等. 甜菜夜蛾核型多角体病毒对拟澳洲赤眼蜂的影响:种群参数比较和PCR检测[J]. 昆虫学报, 2005(1): 57-60. [5] 汤心砚, 谭琳, 曾维爱, 等. 不同杀虫剂对烟草斜纹夜蛾的室内及田间防效[J]. 中国植保导刊, 2018, 38(5): 58-60, 71. [6] 张海波, 王风良, 陈永明, 等. 核型多角体病毒对玉米草地贪夜蛾的控制作用研究[J]. 植物保护, 2020, 46(2): 254-260. [7] 毛建萍, 浦冠勤. 斜纹夜蛾核型多角体病毒的研究与应用[J]. 中国蚕业, 2005(2): 6-9. [8] Paredes-Sánchez F A, Rivera G, Bocanegra-García V, et al. Advances in control strategies against Spodoptera frugiperda. A Review[J]. Molecules, 2021, 26(18): 5587. [9] 徐莉, 李冬植, 陈锡岭, 等. 斜纹夜蛾核型多角体病毒的鉴定及室内消除[J]. 河南科技学院学报(自然科学版), 2020, 48(2): 22-27. [10] 温荣辉, 贤振华, 王卫光, 等. 广西斜纹夜蛾核型多角体病毒的分离鉴定[J]. 广西农业生物科学, 2005(1): 9-13. [11] 苏志坚, 庞义, 余健秀, 等. 污染寄主卵面的斜纹夜蛾核多角体病毒PCR检测及其消除[J]. 农业生物技术学报, 2001(2): 119-122. [12] 杨健, 陈俊晖, 关丽梅, 等. 一株草地贪夜蛾核型多角体病毒新分离物的室内毒力测定与基因组分析[J]. 植物保护, 2024, 50(5): 26-41, 62. [13] 类承凤, 姜干明, 彭玲, 等. 亚洲玉米螟核型多角体病毒分离株鉴定及其对草地贪夜蛾的室内毒力测定[J]. 中国生物防治学报, 2019, 35(5): 741-746. [14] Yang S, Zhao L, Ma R, et al. Improving baculovirus infectivity by efficiently embedding enhancing factors into occlusion bodies[J]. Applied and Environmental Microbiology, 2017, 83(14): e00595-17. [15] 王承锐, 李娜, 李恩杰, 等. TaqMan实时荧光定量PCR检测美国白蛾核型多角体病毒方法的建立[J]. 环境昆虫学报, 2019, 41(4): 922-928. [16] Velasco E A, Molina-Ruíz C S, Gómez-Díaz J S, et al. Properties of nucleopolyhedrovirus occlusion bodies from living and virus-killed larvae of Spodoptera frugiperda (Lepidoptera: Noctuidae)[J]. Biological Control, 2022, 174: 105008. [17] Huan Y, Chang J Y, Yi Y O, et al. Enhanced virulence of genetically engineered autographa californica nucleopolyhedrovirus owing to accelerated viral DNA replication aided by inserted ascovirus genes[J]. Pesticide Biochemistry and Physiology, 2023, 192: 105382. [18] Bentivenha J P F, Rodrigues J G, Lima M F, et al. Baseline susceptibility of Spodoptera frugiperda (Lepidoptera: Noctuidae) to SfMNPV and evaluation of cross-resistance to major insecticides and Bt proteins[J]. Journal of Economic Entomology, 2019, 112(1): 91-98. [19] Chen Z W, Yang Y C, Zhang J F, et al. Susceptibility and tissue specificity of Spodoptera frugiperda to Junonia coenia densovirus[J]. Journal of Integrative Agriculture, 2021, 20(3): 840-849. [20] Lei C F, Yang J, Wang J, et al. Molecular and biological characterization of Spodoptera frugiperda multiple nucleopolyhedrovirus field isolate and genotypes from China[J]. Insects, 2020, 11(11): 777. [21] 袁冬菊, 颜果, 张敏, 等. 影响斜纹夜蛾核型多角体病毒增殖的因素研究[J]. 湖南林业科技, 2025, 52(1): 17-23. [22] Cooper D, Cory J S, Myers J H. Hierarchical spatial structure of genetically variable nucleopolyhedroviruses infecting cyclic populations of western tent caterpillars[J]. Molecular Ecology, 2003, 12(4): 881-990. [23] Jun T, Shohei O, Madoka N, et al. Genetic and biological comparisons of ten geographic isolates of a nucleopolyhedrovirus that infects Spodoptera litura (Lepidoptera: Noctuidae)[J]. Biological Control, 2003, 26: 32-39. [24] Liang Z P, Yang Y Q, Sun X Y, et al. Integrated analysis of MicroRNA and mRNA expression profiles in the fat bodies of MbMNPV-infected Helicoverpa armigera[J]. Viruses, 2022, 15(1): 19. [25] Barrera G, Simón O, Villamizar L, et al. Spodoptera frugiperda multiple nucleopolyhedrovirus as a potential biological insecticide: genetic and phenotypic comparison of field isolates from Colombia[J]. Biological Control, 2011, 58(2): 113-120. [26] Shi Z A, Li Y Z, Wu S L, et al. The complete genome and biological activity of a novel Spodoptera litura multiple nucleopolyhedrovirus for controlling Spodoptera frugiperda[J]. Biological Control, 2024, 188: 105412. [27] Jiang L, Goladsmith M R, Xia Q Y. Advances in the arms race between silkworm and baculovirus[J]. Frontiers in Immunology, 2021, 12: 628151. [28] 秦启联, 程清泉, 张继红, 等. 昆虫病毒生物杀虫剂产业化及其展望[J]. 中国生物防治学报, 2012, 28(2): 157-164. [29] 陈秀琴, 刘其全, 田新湖, 等. 草地贪夜蛾生物防治研究进展[J]. 福建农业学报, 2021, 36(8): 981-988. [30] Shen Z J, Liu Y J, Cheng J, et al. High temperature exposure reduces the susceptibility of Helicoverpa armigera to its nucleopolyhedrovirus (HearNPV) by enhancing expression of heat shock proteins[J]. Pest Management Science, 2022, 78(6): 2378-2389. [31] Pepi A, Pan V, Rutkowski D, et al. Influence of delayed density and ultraviolet radiation on caterpillar baculovirus infection and mortality[J]. Journal of Animal Ecology, 2022, 91(11): 2192-2202. |