[1] 王思威, 段劲生, 高同春, 等. 14种高效低风险农药在水稻安全生产中的应用[J]. 广东农业科学, 2020, 47(9): 105-113. [2] 梁继旺. 水稻病虫害防治化学农药减量控害技术[J]. 江西农业, 2022(2): 35-36. [3] Wu J C, Ge L Q, Liu F, et al. Pesticide-induced planthopper population resurgence in rice cropping systems[J]. Annual Review of Entomology, 2020, 65: 409-429. [4] 马丁. 吉林省西部地区水稻生产过程农药使用情况调查与分析[D]. 吉林: 吉林农业大学, 2020. [5] Poveda J. Trichoderma as biocontrol agent against pests: new uses for a mycoparasite[J]. Biological Control, 2021, 159: 104634. [6] Guzmán-Guzmán P, Kumar A, de los Santos-villalobos S, et al. Trichoderma Species: Our best fungal allies in the biocontrol of plant aiseases—a review[J]. Plants, 2023, 12(3): 432. [7] Yao X, Guo H L, Zhang K X, et al. Trichoderma and its role in biological control of plant fungal and nematode disease[J]. Frontiers in Microbiology, 2023, 14: 1160. [8] 李敏, 杨谦, 王疏, 等. 哈茨木霉与多菌灵复合使用对水稻苗期立枯病的防治[J]. 浙江大学学报(农业与生命科学版), 2009, 35(1): 65-70. [9] 张艳丽. 木霉制剂和杀菌剂协同控制辣椒疫病的研究[D]. 浙江: 浙江大学, 2013. [10] 余丹, 黄宇, 黄振. 哈茨木霉菌毒素与世高对桑葚核地杖菌抑菌活性的生物测定[J]. 热带作物学报, 2018, 39(4): 763-767. [11] 孟茜娅. 光照条件优化提高哈茨木霉NJAU4742产孢效率和孢子抗逆性技术研发[D]. 南京: 南京农业大学, 2022. [12] Zin N A, Badaluddin N A. Biological functions of Trichoderma spp. for agriculture applications[J]. Annals of Agricultural Sciences, 2020, 65(2): 168-178. [13] Sehim A E, Hewedy O A, Altammar K A, et al. Trichoderma asperellum empowers tomato plants and suppresses Fusarium oxysporum through priming responses[J]. Frontiers in Microbiology, 2023, 14: 1140378. [14] Lombardi N, Salzano A M, Troise A D, et al. Effect of Trichoderma bioactive metabolite treatments on the production, quality, and protein profile of strawberry fruits[J]. Journal of Agricultural and Food Chemistry, 2020, 68(27): 7246-7258. [15] Marra R, Lombardi N, Errico G, et al. Application of Trichoderma strains and metabolites enhances soybean productivity and nutrient content[J]. Journal of Agricultural and Food Chemistry, 2019, 67(7): 1814-1822. [16] 王家银, 王履浙, 王继光. 稻飞虱的几种田间调查方法比较[J]. 云南农业科技, 1991(3): 24-25. [17] 邓茹月, 闫志强, 朱速松, 等. 贵州省不同籼稻品种稻米品质及风味物质分析[J]. 江苏农业科学, 2021, 49(11): 138-146. [18] Garnica-Vergara A, Barrera-Ortiz S, Munoz-Parra E, et al. The volatile 6-pentyl-2h-pyran-2-one from Trichoderma atroviride regulates arabidopsis thaliana root morphogenesis via auxin signaling and ethylene insensitive 2 functioning[J]. New Phytologist, 2016, 4(209): 1496-1512 [19] Leitgeb B, Szekeres A, Manczinger L, et al. The history of alamethicin: a review of the most extensively studied peptaibol[J]. Chemistry & Biodiversity, 2007, 4(6): 1027-1051. [20] Li H X, Liu X Y, Hu Z L, et al. Novel Sesquiterpene and diterpene aminoglycosides from the deep-sea-sediment fungus Trichoderma sp. SCSIOW21[J]. Marine Drugs, 2022, 21(1): 7. [21] Cai F, Yu G, Wang P, et al. Harzianolide, a novel plant growth regulator and systemic resistance elicitor from Trichoderma harzianum[J]. Plant Physiology and Biochemistry, 2013, 73: 106-13. [22] Peng W W, Tan J B, Sang Z H, et al. Koninginins X-Z, three new polyketides from Trichoderma koningiopsis SC-5[J]. Molecules, 2023, 28(23): 7848. [23] Su H N, Chen Z H, Song X Y, et al. Antimicrobial peptide trichokonin VI-induced alterations in the morphological and nanomechanical properties of Bacillus subtilis[J]. PLoS ONE, 2012, 7(9): e45818. [24] Kumagai N, Shibasaki M. Synthetic studies of viridiofungins, broad-spectrum antifungal agents and serine palmitoyl transferase inhibitors[J]. Journal of Antibiotics, 2018, 71(1): 53-59. [25] Barúa JE, de la Cruz M, de Pedro N, et al. Synthesis of Trichodermin derivatives and their antimicrobial and cytotoxic activities[J]. Molecules, 2019, 24(20): 3811. [26] Zhang W, Sunami K, Liu S, et al. Scalable preparation of furanosteroidal viridin, β-viridin and viridiol from Trichoderma virens[J]. Scientific Reports, 2025, 15(1): 3110. [27] 庞冠. 木霉菌NJAU 4742中azaphilones类次生代谢产物的生物合成途径和功能研究[D]. 江苏: 南京农业大学, 2020. [28] Phuwapraisirisan P, Rangsan J, Siripong P, et al. 9-epi-Viridiol, a novel cytotoxic furanosteroid from soil fungus Trichoderma virens[J]. Natural Product Research, 2006, 20(14): 1321-5. [29] Zaid R, Koren R, Kligun E, et al. Gliotoxin, an immunosuppressive fungal metabolite, primes plant immunity: evidence from Trichoderma virens-tomato interaction[J]. mBio, 2022, 13(4): e0038922. [30] Ghoreishi G, Barrena R, Font X. Using green waste as substrate to produce biostimulant and biopesticide products through solid-state fermentation[J]. Waste Management, 2023, 159: 84-92. [31] Huong N T M, Hoai P T T, Thao P T H, et al. Growth stimulation, phosphate resolution, and resistance to fungal pathogens of some endogenous fungal strains in the rhizospheres of medicinal plants in vietnam[J]. Molecules, 2022, 27(16): 5051. [32] 张妍玉. 里氏木霉乙酰辅酶A合成路径分析与聚酮化合物6-甲基水杨酸的异源合成[D]. 济南: 山东大学, 2023. [33] 余传金. 哈茨木霉菌PAF-AH-like和hyd1基因系统诱导玉米抗弯孢叶斑病机理研究[D]. 上海: 上海交通大学, 2016. [34] 薛鸣, 战鑫, 王睿, 等. 橡胶树两种叶部病害拮抗木霉T008的筛选、鉴定及室内防效评价[J]. 中国生物防治学报, 2022, 38(01): 125-132. [35] 杨春林, 李洪浩, 胡强, 等. 哈茨木霉β-葡聚糖酶诱导、纯化及对黄瓜幼苗的促生防病作用[J]. 中国蔬菜, 2024(4): 121-128. [36] 郎博, 陈捷. 哈茨木霉纤维素酶基因系统诱导玉米抗叶斑病机制[C]//中国植物病理学会. 植物病理科技创新与绿色防控——中国植物病理学会2021年学术年会论文集, 2021: 1. [37] Bai Z X, Chen L S, Lu C M, et al. First report of Curvularia plantarum causing rice spikelet rot disease in China[J]. Plant Disease, 2024, 108(4): 1102. [38] 白艳龙, 邵雅芳, 周小龙, 等. 不同新鲜度酿造用大米挥发性成分分析[J]. 核农学报, 2024, 38(9): 1636-1646. [39] Rodrigues A O, Mio L L, Soccol C R. Trichoderma as a powerful fungal disease control agent for a more sustainable and healthy agriculture: recent studies and molecular insights[J]. Planta, 2023, (31): 257. [40] Visconti D, Fiorentino N, Cozzolino E, et al. Can Trichoderma-based biostimulants optimize N use efficiency and stimulate growth of leafy vegetables in greenhouse intensive cropping systems?[J]. Agronomy, 2020, 20(121): 1-17. [41] 张晶晶. 利用厚垣孢子改良木霉制剂[D]. 天津: 河北工业大学, 2015. [42] Zaki O, Weekers F, Thonart P, et al. Limiting factors of mycopesticide development[J]. Biological Control, 2020, 144: 104220. [43] Chetan K, Kartikay B, Manoj K C, et al. Exploring the role of secondary metabolites of Trichoderma in tripartite interaction with plant and pathogens[M]. In Agro-Environmental Sustainability edited by Jay Shankar Singh Gamini Seneviratne. Berlin: Springer, 2017, 63-81. [44] 陈捷. 木霉菌剂制备与应用技术[M]. 北京: 中国农业出版社, 2023, 28-42. [45] Marra R, Lombardi N, Errico G, et al. Application of Trichoderma strains and metabolites enhances soybean productivity and nutrient content[J]. Journal of Agricultural and Food Chemistry, 2019, 67(7): 1814-1822. [46] Li T T, Zhang J D, Tang J Q, et al. Combined use of Trichoderma atroviride CCTCCSBW0199 and brassinolide to control Botrytis cinerea infection in tomato[J]. Plant Disease, 2020, 104(5): 1298-1304. [47] Derbalah A, El-Kot G, Hamza A. Control of powdery mildew in okra using cultural filtrates of certain bio-agents alone and mixed with penconazole[J]. Archives of Phytopathology and Plant Protection, 2011, 44: 17-20. [48] 梁奕, 庄海宁, 冯涛, 等. 大米及其衍生食品风味物质的研究进展[J]. 粮油食品科技, 2021, 29(1): 41-49. [49] K?hl J, Kolnaar R, Ravensberg W J. Mode of action of microbial biological control agents against plant diseases: relevance beyond efficacy[J]. Frontiers in Plant Science, 2019, 10: 845. [50] Ty?kiewicz R, Nowak A, Ozimek E, et al. Trichoderma: The current status of its application in agriculture for the biocontrol of fungal phytopathogens and stimulation of plant growth[J]. International Journal of Molecular Sciences, 2022, 23(4): 2329. [51] Xiong W, Guo S, Jousset A, et al. Bio-fertilizer application induces soil suppressiveness against fusarium wilt disease by reshaping the soil microbiome[J]. Soil Biology & Biochemistry, 2017, 114: 238-247. [52] Guzmán-Guzmán P, Kumar A, de los Santos-Villalobos S, et al. Trichoderma species: our best fungal allies in the biocontrol of plant diseases—A Review[J]. Plants, 2023, 12(3): 432. |