[1] Alabouvette C, Olivain C, Steinberg C. Biological control of plant diseases: the European situation[J]. European Journal of Plant Pathology, 2006, 114(3): 329-341.
[2] Gerbore J, Vallance J, Yacoub A, et al. Characterization of Pythium oligandrum populations that colonize the rhizosphere of vines from the Bordeaux region[J]. FEMS Microbiology Ecology, 2014, 90(1): 153-167.
[3] Lévesque C A. Fifty years of oomycetes—from consolidation to evolutionary and genomic exploration[J]. Fungal Diversity, 2011, 50(1): 35-46.
[4] Kawamura Y, Hase S, Takenaka S, et al. INF1 elicitin activates jasmonic acid and ethylenemediated signalling pathways and induces resistance to bacterial wilt disease in tomato[J]. Journal of Phytopathology, 2009, 157(5): 287-297.
[5] Rey P, Le Floch G, Benhamou N, et al. Pythium oligandrum biocontrol: its relationships with fungi and plants[J]. Plant-Microbe Interactions, 2008: 43-57.
[6] Horner N R, Grenville-Briggs L J, van West P. The oomycete Pythium oligandrum expresses putative effectors during mycoparasitism of Phytophthora infestans and is amenable to transformation[J]. Fungal Biology, 2012, 116(1): 24-41.
[7] 邢晓科, 郭顺星. 菌寄生真菌与寄主相互作用的生化研究进展[J]. 菌物系统, 2002, 21(1): 141-146.
[8] Inbar J, Chet I. Biomimics of fungal cell-cell recognition by use of lectin-coated nylon fibers[J]. Journal of Bacteriology, 1992, 174(3): 1055-1059.
[9] Seidl V, Song L, Lindquist E, et al. Transcriptomic response of the mycoparasitic fungus Trichoderma atroviride to the presence of a fungal prey[J]. BMC Genomics, 2009, 10(1): 1.
[10] Hermosa R, Viterbo A, Chet I, et al. Plant-beneficial effects of Trichoderma and of its genes[J]. Microbiology, 2012, 158(1): 17-25.
[11] Veselý D. Parasitic relationships between Pythium oligandrum Drechsler and some other species of the Oomycetes class[J]. Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene. Zweite Naturwissenschaftliche Abteilung: Mikrobiologie der Landwirtschaft, der Technologie und des Umweltschutzes, 1978, 133(4): 341-349.
[12] Picard K, Tirilly Y, Benhamou N. Cytological effects of cellulases in the parasitism of Phytophthora parasitica by Pythium oligandrum[J]. Applied and Environmental Microbiology, 2000, 66(10): 4305-4314.
[13] Grenville-Briggs L J, Horner N R, Phillips A J, et al. A family of small tyrosine rich proteins is essential for oogonial and oospore cell wall development of the mycoparasitic oomycete Pythium oligandrum[J]. Fungal Biology, 2013, 117(3): 163-172.
[14] Sticher L, Mauch-Mani B, Métraux, et al. Systemic acquired resistance[J]. Annual Review of Phytopathology, 1997, 35(1): 235-270.
[15] 赵建, 黄建国, 袁玲, 等. 寡雄腐霉发酵液对番茄生长的影响及对灰霉病的防治作用[J]. 生态学报, 2014, 34(23): 7093-7100.
[16] Hase S, Takahashi S, Takenaka S, et al. Involvement of jasmonic acid signalling in bacterial wilt disease resistance induced by biocontrol agent Pythium oligandrum in tomato[J]. Plant Pathology, 2008, 57(5): 870-876.
[17] van der Ent S, van Wees S C, Pieterse C M. Jasmonate signaling in plant interactions with resistance-inducing beneficial microbes[J]. Phytochemistry, 2009, 70(13): 1581-1588.
[18] Pieterse C M, van Wees S C, van Pelt J A, et al. A novel signaling pathway controlling induced systemic resistance in Arabidopsis[J]. The Plant Cell, 1998, 10(9): 1571-1580.
[19] Spoel S H, Koornneef A, Claessens S M, et al. NPR1 modulates cross-talk between salicylate-and jasmonate-dependent defense pathways through a novel function in the cytosol[J]. The Plant Cell, 2003, 15(3): 760-770.
[20] Koornneef A, Pieterse C M. Cross talk in defense signaling[J]. Plant Physiology, 2008, 146(3): 839-844.
[21] Veloso J, Díaz J. Fusarium oxysporum Fo47 confers protection to pepper plants against Verticillium dahliae and Phytophthora capsici, and induces the expression of defence genes[J]. Plant Pathology, 2012, 61(2): 281-288.
[22] Vlot A C, Dempsey D M A, Klessig D F. Salicylic acid, a multifaceted hormone to combat disease[J]. Annual Review of Phytopathology, 2009, 47: 177-206.
[23] Picard K, Ponchet M, Blein J-P, et al. Oligandrin: A proteinaceous molecule produced by the mycoparasite Pythium oligandrum induces resistance to Phytophthora parasitica infection in tomato plants[J]. Plant Physiology, 2000, 124(1): 379-396.
[24] Mohamed N, Lherminier J, Farmer M J, et al. Defense responses in grapevine leaves against Botrytis cinerea induced by application of a Pythium oligandrum strain or its elicitin, oligandrin, to roots[J]. Phytopathology, 2007, 97(5): 611-620.
[25] Takenaka S, Nakamura Y, Kono T, et al. Novel elicitin-like proteins isolated from the cell wall of the biocontrol agent Pythium oligandrum induce defence-related genes in sugar beet[J]. Molecular Plant Pathology, 2006, 7(5): 325-339.
[26] Takenaka S, Nishio Z, Nakamura Y. Induction of defense reactions in sugar beet and wheat by treatment with cell wall protein fractions from the mycoparasite Pythium oligandrum[J]. Phytopathology, 2003, 93(10): 1228-1232.
[27] Takenaka S, Tamagake H. Foliar spray of a cell wall protein fraction from the biocontrol agent Pythium oligandrum induces defence-related genes and increases resistance against Cercospora leaf spot in sugar beet[J]. Journal of General Plant Pathology, 2009, 75(5): 340-348.
[28] Yacoub A, Gerbore J, Magnin N, et al. Ability of Pythium oligandrum strains to protect Vitis vinifera L., by inducing plant resistance against Phaeomoniella chlamydospora, a pathogen involved in Esca, a grapevine trunk disease[J]. Biological Control, 2016, 92: 7-16.
[29] Masunaka A, Sekiguchi H, Takahashi H, et al. Distribution and expression of elicitin-like protein genes of the biocontrol agent Pythium oligandrum[J]. Journal of Phytopathology, 2010, 158(6): 417-426.
[30] Benhamou N, Bélanger R R, Rey P, et al. Oligandrin, the elicitin-like protein produced by the mycoparasite Pythium oligandrum, induces systemic resistance to Fusarium crown and root rot in tomato plants[J]. Plant Physiology and Biochemistry, 2001, 39(7): 681-696.
[31] Wang A Y, Lou B G, Xu T. Inhibitory effect of the secretion of Pythium oligandrum on plant pathogenic fungi and the control effect against tomato gray mould[J]. Acta Phytophylacica Sinica, 2007, 1: 11.
[32] Kratka J, Bergmanova E, Kudelova A. Effect of Pythium oligandrum and Pythium ultimum on biochemical changes in cucumber (Cucumis sativus L.)[J]. Journal of Plant Diseases and Protection, 1994, 101: 406-413.
[33] 耿明明, 黄建国. 寡雄腐霉发酵液的动物毒性及对辣椒的促生防病效应[J]. 植物保护学报, 2016, 43(2): 307-313.
[34] 欧阳由男, 夏陆欣, 朱练峰, 等. 寡雄腐霉制剂“多利维生”对水稻的促长与防病增产效果[J]. 中国稻米, 2007(6): 48-51.
[35] Helman Y, Burdman S, Okon Y. Plant growth promotion by rhizosphere bacteria through direct effects[M]//Beneficial Microorganisms in Multicellular Life Forms. Berlin Heidelberg: Springer, 2012, 89-103.
[36] Benhamou N, le Floch G, Vallance J, et al. Pythium oligandrum: an example of opportunistic success[J]. Microbiology, 2012, 158(11): 2679-2694.
[37] Le Floch G, Vallance J, Benhamou N, et al. Combining the oomycete Pythium oligandrum with two other antagonistic fungi: root relationships and tomato grey mold biocontrol[J]. Biological Control, 2009, 50(3): 288-298.
[38] Takenaka S, Sekiguchi H, Nakaho K, et al. Colonization of Pythium oligandrum in the tomato rhizosphere for biological control of bacterial wilt disease analyzed by real-time PCR and confocal laser-scanning microscopy[J]. Phytopathology, 2008, 98(2): 187-195.
[39] Masunaka A, Nakaho K, Sakai M, et al. Visualization of Ralstonia solanacearum cells during biocontrol of bacterial wilt disease in tomato with Pythium oligandrum[J]. Journal of General Plant Pathology, 2009, 75(4): 281-287.
[40] 孙海, 王晓青, 李云龙, 等. 寡雄腐霉施用时期对设施黄瓜霜霉病的防治试验[J]. 生物技术进展, 2014, 1: 13.
[41] Patkowska E. Effectiveness of grapefruit extract and Pythium oligandrum in the control of bean and peas pathogens[J]. Journal of Plant Protection Resource, 2006, 46(1): 15-28.
[42] 王爱英, 楼兵干, 徐同. 寡雄腐霉分泌物对植物病原真菌的抑制作用及其对番茄灰霉病的防治效果[J]. 植物保护学报, 2007, 34(1): 57-60.
[43] 乔岩, 董杰, 岳瑾. 3种微生物菌剂对番茄灰霉病的防治效果[J]. 河南农业科学, 2014, 43(5): 111-113.
[44] 贾瑞莲, 耿明明, 袁玲. 寡雄腐霉发酵液对温室番茄生长及灰霉病的防治作用[J]. 植物保护学报, 2015, 42(5): 827-833.
[45] 王胤, 王晓青, 胡彬, 等. 8种杀菌剂对番茄晚疫病菌的室内抑菌试验[J]. 农学学报, 2016, 6(2): 48-51.
[46] 胡彬, 黄中乔, 刘西莉, 等. 9种杀菌剂对韭菜灰霉病的防治效果[J]. 中国农学通报, 2014, 30(4): 293-298.
[47] 毕扬, 张艳杰, 郭巍, 等. 防治西葫芦和黄瓜白粉病的生物制剂的筛选[J]. 植物保护, 2016, 42(5): 44.
[48] Vestberg M, Kukkonen S, Saari K, et al. Microbial inoculation for improving the growth and health of micropropagated strawberry[J]. Applied Soil Ecology, 2004, 27(3): 243-258.
[49] 吉沐祥, 陈宏州, 吴祥, 等. 8种生物杀菌剂对草莓枯萎病菌室内抑菌活性的测定[J]. 江苏农业科学, 2014, 42(9): 103-106.
[50] 邱先斌, 李莉, 张惠琼, 等. 寡雄腐霉防治大棚草莓病害试验初报[J]. 湖北植保, 2014(4): 25.
[51] 吴祥, 姚克兵, 吉沐祥, 等. 句容地区草莓枯萎病病原菌的分离鉴定及田间防治[J]. 江苏农业学报, 2015, 31(4): 764-770.
[52] 伊海静, 陈艳, 刘正坪, 等. 草莓枯萎病菌的分离鉴定及防治药剂筛选[J]. 西北农业学报, 2016, 25(4): 626-635.
[53] Takenaka S, Ishikawa S. Biocontrol of sugar beet seedling and taproot diseases caused by Aphanomyces cochlioides by Pythium oligandrum treatments before transplanting[J]. Japan Agricultural Research Quarterly, 2013, 47(1): 75-83.
[54] 赵建, 吴叶宽, 袁玲, 等. 寡雄腐霉发酵液对烤烟生长的影响及对烟草黑胫病的防治作用[J]. 植物保护学报, 2013, 40(1): 68-72.
[55] 赵建, 袁玲, 黄建国. 寡雄腐霉发酵参数优化及发酵液的生防效应[J]. 中国农业科学, 2013, 46(2): 292-299.
[56] 何国振, 李锦坤, 高伟, 等. 广东省广藿香种植业发展策略[J]. 中国农学通报, 2012, 28(31): 288-292.
[57] 许伟民, 谢昀烨, 王春伟, 等. 北五味子黑斑病的药剂防治[J]. 吉林农业大学学报, 2013(5): 520-529.
[58] 刘畅, 卢宝慧, 刘小畅, 等. 刺五加黑斑病的室内药剂筛选和田间药效试验[J]. 吉林农业大学学报, 2015, 37(3): 281-286.
[59] Vallance J, Le Floch G, Déniel F, et al. Influence of Pythium oligandrum biocontrol on fungal and oomycete population dynamics in the rhizosphere[J]. Applied and Environmental Microbiology, 2009, 75(14): 4790-4800.
[60] Vallance J, Déniel F, Barbier G, et al. Influence of Pythium oligandrum on the bacterial communities that colonize the nutrient solutions and the rhizosphere of tomato plants[J]. Canadian Journal of Microbiology, 2012, 58(9): 1124-1134.
[61] 姜晓环, 王恩东, 杨康, 等. 几种常见杀虫剂及杀菌剂对异色瓢虫的影响[J]. 植物保护, 2015, 42(4): 30.
[62] Ezziyyani M, Requena M, Egea-Gilabert C, et al. Biological control of Phytophthora root rot of pepper using Trichoderma harzianum and Streptomyces rochei in combination[J]. Journal of Phytopathology, 2007, 155(6): 342-349.
[63] Whipps J M. Prospects and limitations for mycorrhizas in biocontrol of root pathogens[J]. Canadian Journal of Botany, 2004, 82(8): 1198-1227.
[64] 商靖, 刘雪峰, 阿地力, 等. 核桃基腐病的病原鉴定[J]. 林业科学, 2010, 46(12): 97-100.
[65] 蒋萍, 阿地力, 沙塔尔. 核桃基腐病病菌越冬场所试验研究[J]. 新疆农业大学学报, 2014, 37(6): 465-468.
[66] 龙艳艳. 腐霉属的DNA条形码和分子系统学研究[D]. 南宁: 广西大学, 2014.
[67] Berger H, Yacoub A, Gerbore J, et al. Draft genome sequence of biocontrol agent Pythium oligandrum strain Po37, an oomycota[J]. Genome Announcements, 2016, 4(2): 215-216. |