[1] Mertely J C, MacKenzie S J, Legard D E. Timing of fungicide applications for Botrytis cinerea based on development stage of strawberry flowers and fruit[J]. Plant Disease, 2002, 86:1019-1024. [2] Cordova L G, Amiri A, Peres N A. Effectiveness of fungicide treatments following the strawberry advisory system for control of Botrytis fruit rot in Florida[J]. Crop Protection, 2017, 100:163-167. [3] Petrasch S, Knapp S J, van Kan J A L, et al. Grey mould of strawberry, a devastating disease caused by the ubiquitous necrotrophic fungal pathogen Botrytis cinerea[J]. Molecular Plant Pathology, 2019, 20:877-892. [4] 肖婷, 许媛, 陈宏州, 等. 江苏丘陵地区草莓灰霉病菌(Botrytis cinerea)对QoIs类杀菌剂的抗药性研究[J]. 果树学报, 2017, 34(5):603-610. [5] 肖婷, 陈露, 张建华, 等. 江苏省句容市灰霉病菌对啶酰菌胺的抗药性[J]. 江苏农业学报, 2018, 34(1):50-55. [6] 贡常委, 秦旖曼, 屈劲松, 等. 四川省草莓灰霉病菌对咯菌腈的抗性测定及其机制[J]. 中国农业科学, 2018, 51(22):4277-4287. [7] 张亚, 王翀, 刘双清, 等. 湖南省草莓灰霉病菌对4种杀菌剂的抗药性检测[J]. 植物保护, 2016, 42(5):181-187. [8] 戎素云, 郭广辉. 食品安全事件的经济学解读及其制度改进启示——对"草莓农药残留超标"事件的分析[J]. 河北经贸大学学报, 2017, 38(1):79-84. [9] 刘敏, 张宏雨, 陈利平, 等. 2017年昌平草莓质量安全调查分析报告[J]. 农学学报, 2018, 8(5):15-20. [10] 崔新仪, 阮璐璐, 黄思达, 等. 温室草莓生产中超量使用多菌灵的风险评估[J]. 农药, 2018, 57(8):582-584, 608. [11] Pertot I, Giovannini O, Benanchi M, et al. Combining biocontrol agents with different mechanisms of action in a strategy to control Botrytis cinerea on grapevine[J]. Crop Protection, 2017, 97:85-93. [12] Robinson-Boyer L, Jeger M J, Xu X-M, et al. Management of strawberry grey mould using mixtures of biocontrol agents with different mechanisms of action[J]. Biocontrol Science and Technology, 2009, 19:1051-1065. [13] 杨清平, 王立华, 胡楠. EM菌对猕猴桃溃疡病的防治试验[J]. 福建林业科技, 2015, 42(1):100-102, 114. [14] 李海江, 王正平, 宋学立, 等. 河南省平顶山烟区烟草根腐病发病情况调查及EM菌剂防治效果研究[J]. 农学学报, 2017, 7(2):25-30. [15] 贾宇, 董晨阳, 周绪宝, 等. 品质因子和益生菌对草莓品质和贮藏的影响[J]. 农产品加工, 2019(13):12-15. [16] 程存刚, 赵德英, 吕德国, 等. 植物源有机物料对果园土壤微生物群落多样性的影响[J]. 植物营养与肥料学报, 2014, 20(4):913-922. [17] Grigera M S, Drijber R A, Eskridge K M, et al. Soil microbial biomass relationships with organic matter fractions in a nebraska corn field mapped using apparent electrical conductivity[J]. Soil Science Society of America Journal, 2006, 70(5):1480-1488. [18] 燕嗣皇, 陆德清, 杨雨环. 木霉米糠菌剂沾根防治辣椒枯萎病[J]. 中国生物防治, 1999, 15(2):50. [19] 朱宗源, 周新根, 宋荣浩, 等. 用生物制剂防治青椒疫病[J]. 上海农业学报, 1995, 11(1):64-68. [20] 袁飞, 彭宇, 张春兰, 等. 有机物料减轻设施连作黄瓜苗期病害的微生物效应[J]. 应用生态学报, 2004, 15(5):867-870. [21] 曹书苗, 薛泉宏, 邢胜利. 施用有机无机养分对生防放线菌数量的影响[J]. 西北农林科技大学学报(自然科学版), 2010, 38(10):210-215. [22] 崔鸣, 李建国, 陈和润, 等. 生防菌和有机专用肥对魔芋软腐病的防控效果及增产效应试验研究[J]. 陕西农业科学, 2014, 60(11):28-29, 37. [23] 郝玉敏, 戴传超, 戴志东, 等. 拟茎点霉B3与有机肥配施对连作草莓生长的影响[J]. 生态学报, 2012, 32(21):6695-6704. [24] 马艳, 李艳霞, 常志州, 等. 强化拮抗菌有机肥在连作大棚草莓上的应用效果研究[J]. 植物营养与肥料学报, 2011, 17(6):1459-1467. [25] Shen T, Wang C, Yang H, et al. Identification, solid-state fermentation and biocontrol effects of Streptomyces hygroscopicus B04 on strawberry root rot[J]. Applied Soil Ecology, 2016, 103:36-43. [26] 林先贵. 土壤微生物研究原理与方法[M]. 北京:高等教育出版社, 2010. [27] Benítez T, Rincón A M, Limón M C, et al. Biocontrol mechanisms of Trichoderma strains[J]. International Microbiology, 2004, 7:249-260. [28] Card S D, Walter M, Jaspers M V, et al. Targeted selection of antagonistic microorganisms for control of Botrytis cinerea of strawberry in New Zealand[J]. Australasian Plant Pathology, 2009, 38:183-192. [29] 吉海龙, 伊洪伟, 池玉杰. 长枝木霉菌株T05抑菌活性与拮抗机制[J]. 东北林业大学学报, 2016, 44(1):114-119. [30] Kuzmanovska B, Rusevski R, Jankulovska M, et al. Antagonistic activity of Trichoderma asperellum and Trichoderma harzianum against genetically diverse Botrytis cinerea isolates[J]. Chilean Journal of Agricultural Research, 2018, 78:391-399. [31] Cruz A F, Barka G D, Sylla J, et al. Biocontrol of strawberry fruit infected by Botrytis cinerea:Effects on the microbial communities on fruit assessed by next-generation sequencing[J]. Journal of Phytopathology, 2018, 166:403-411. [32] Shternshis M V, Belyaev A A, Shpatova T V, et al. Influence of Bacillus spp. on strawberry gray-mold causing agent and host plant resistance to disease[J]. Contemporary Problems of Ecology, 2015, 8:390-396. [33] Sylla J, Alsanius B W, Krüger E, et al. Control of Botrytis cinerea in strawberries by biological control agents applied as single or combined treatments[J]. European Journal of Plant Pathology, 2015, 143:461-471. [34] Jangir M, Sharma S, Sharma S. Target and non-target effects of dual inoculation of biocontrol agents against Fusarium wilt in Solanum lycopersicum[J]. Biological Control, 2019, 138:104069. [35] Olle M, Williams I H. Effective microorganisms and their influence on vegetable production-a review[J]. The Journal of Horticultural Science and Biotechnology, 2013, 88:380-386. [36] Shin K, van Diepen G, Blok W, et al. Variability of effective micro-organisms (EM) in bokashi and soil and effects on soil-borne plant pathogens[J]. Crop Protection, 2017, 99:168-176. [37] Hu C, Qi Y. Long-term effective microorganisms application promote growth and increase yields and nutrition of wheat in China[J]. European Journal of Agronomy, 2013, 46:63-67. [38] Talaat N B, Ghoniem A E, Abdelhamid M T, et al. Effective microorganisms improve growth performance, alter nutrients acquisition and induce compatible solutes accumulation in common bean (Phaseolus vulgaris L.) plants subjected to salinity stress[J]. Plant Growth Regulation, 2014, 75:281-295. [39] Nesbitt H J, Malajczuk N, Glenn A R. Effect of organic matter on the survival of Phytophthora cinnamomi rands in soil[J]. Soil Biology and Biochemistry, 1979, 11:133-136. [40] 马建华, 张丽荣, 康萍芝, 等. 秸秆生物反应堆技术的应用对设施黄瓜土壤微生物的影响[J]. 西北农业学报, 2010, 19(12):161-165. [41] 周新根, 朱宗源, 汪树俊. 辅以拮抗微生物的有机添加物对蔬菜土传病原菌的生物防治作用[J]. 上海农业学报, 1994, 10(4):53-58. [42] 王利利, 董民, 张璐, 等. 不同碳氮比有机肥对有机农业土壤微生物生物量的影响[J]. 中国生态农业学报, 2013, 21(9):1073-1077. |