journal1 ›› 2017, Vol. 33 ›› Issue (2/3): 408-414.DOI: 10.16409/j.cnki.2095-039x.2017.03.016
• TECHNICAL REVIEWS • Previous Articles Next Articles
XU Wen1,2, HUANG Yuanyuan2, HUANG Yali2, JIA Zhenhua2, SONG Shuishan2
Received:
2016-11-29
Online:
2017-06-08
Published:
2017-04-08
CLC Number:
XU Wen, HUANG Yuanyuan, HUANG Yali, JIA Zhenhua, SONG Shuishan. Advances on Mechanism of Trichoderma-plant Interaction[J]. journal1, 2017, 33(2/3): 408-414.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zgswfz.com.cn/EN/10.16409/j.cnki.2095-039x.2017.03.016
[1] Weindling R. Trichoderma lignorum as a parasite of other soil fungi[J]. Phytopathology, 1932, 22(3): 837-845. [2] 王革, 李天福, 孙超岷, 等. 烟草木霉菌剂的肥效测定及叶面、根部定殖研究[J]. 中国烟草学报, 2002, 8(4): 27-33. [3] Zhang F G, Zhu Z, Wang B B, et al. Optimization of Trichoderma harzianum T-E5 biomass and determining the degradation sequence of biopolymers by FTIR in solid-state fermentation[J]. Industrial Crops and Products, 2013, 49(8): 619-627. [4] 黄亚丽, 王淑霞, 杜晓哲, 等. 一株具有诱导抗性木霉菌株的筛选及其对黄瓜灰霉病诱导抗性的初步研究[J]. 植物保护, 2013, 39(1): 38-43. [5] 杨合同, 唐文华, 郭勇, 等. 木霉对棉花枯萎病菌和黄萎病菌的作用机理[J]. 山东科学, 2005, 18(3): 9-15. [6] Kubicek C P, Herrera-Estrella A, Seidl-Seiboth V, et al. Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma[J]. Genome Biology, 2011, 12(4): R40. [7] Strakowska J, Błaszczyk L, Chełkowski J. The significance of cellulolytic enzymes produced by Trichoderma in opportunistic lifestyle of this fungus[J]. Journal of Basic Microbiology, 2014, 54(S1): 2-13. [8] Viterbo A, Chet I. TasHyd1 a new hydrophobin gene from the biocontrol agent, Trichoderma asperellum, is involved in plant root colonization[J]. Molecular Plant Pathology, 2006, 7(4): 249-258. [9] Martinez C, Blanc F, Le C E, et al. Salicylic acid and ethylene pathways are differentially activated in melon cotyledons by active or heat-denatured cellulase from Trichoderma longibrachiatum[J]. Plant Physiology, 2001, 127(9): 334-344. [10] Slavica D J, Walter A V, Michael V K, et al. A proteinaceous elicitor Sm1 from the beneficial fungus Trichoderma virens is required for induced systemic resistance in maize[J]. Plant Physiology, 2015, 145(11): 875-889. [11] Hermosa R, Viterbo A, Chet I, et al. Plant-beneficial effects of Trichoderma and of its genes[J]. Microbiology, 2012, 158(Pt1): 17-25. [12] Vos C M F, Cremer K D, Coninck B D, et al. The toolbox of Trichoderma spp. in the biocontrol of Botrytis cinerea disease[J]. Molecular Plant Pathology, 2015, 16(4): 400-412. [13] Malmierca M G, Cardoza R E, Alexander N J, et al. Involvement of Trichoderma trichothecenes in the biocontrol activity and induction of plant defence-related genes[J]. Appllied and Environment Microbiology, 2012, 78(14): 4856-4868. [14] Glare T, Caradus J, Gelernter W, et al. Have biopesticides come of age?[J]. Trends in Biotechnology, 2012, 30(5): 250-258. [15] Hermosa R, BelenRubio M, Cardoza R E, et al. The contribution of Trichoderma to balancing the costs of plant growth and defense[J]. Internaltion Microbiology, 2013, 16(2): 69-80. [16] Djonovic S, Pozo M J, Dangott L J, et al. Sm1, aproteinaceous elicitor secreted by the biocontrol fungus Trichoderma virens induces plant defence responses and systemic resistance[J]. Molecular Plant-Microbe Interactions, 2006, 19(8): 838-853. [17] Khatib M, Lafitte C, Bottin A, et al. The CBEL elicitor of Phytophthora parasitica var. nicotianae activates defence in Arabidopsis thaliana via three different signalling pathways[J]. New Phytologist, 2004, 162(2): 501-510. [18] Rotblat B, Gershoni J M, Schuster S, et al. Identification of an essential component of the elicitation active site of the EIX protein elicitor[J]. The Plant Journal, 2002, 32(35): 1049-1055. [19] Seidl V, Marchetti M, Schandl R, et al. Epl1, the major secreted protein of Hypocrea atroviridis on glucose, is a member of a strongly conserved protein family comprising plant defence response elicitors[J]. The FEBS Journal, 2006, 273(18): 4346-4359. [20] Steyaert J, Hicks E, Kandula J, et al. Methods for the evaluation of the bioactivity and biocontrol potential of species of Trichoderma[J]. Microbial-Based Biopesticides, 2016, 8(27): 23-35. [21] Ron M, Avni A. The receptor for the fungal elicitor ethylene-inducing xylanase is a member of a resistance-like gene family in tomato[J]. Plant Cell, 2004, 16(6): 1604-1615. [22] Matarasso N, Schuster S, Avni A. A novel plant cysteine protease has a dual function as a regulator of 1-aminocyclopropane-1-carboxylic acid synthase gene expression[J]. Plant Cell, 2005, 17(4): 1205-1216. [23] Petutschnig E K, Serazetdinova L, Lipka U, et al. The lysin motif receptor-like kinase (LysM-RLK) CERK1 is a major chitin-binding proteinin Arabidopsis thaliana and subject to chitin-induced phosphorylation[J]. Journal of Biological Chemistry, 2010, 285(37): 28902-28911. [24] Chang Y C, Baler R. Increased growth of plant in the presence of the biological control agent Trichoderma haraianum[J]. Plant Disease, 1986, 70(3): 145-148. [25] 曾华兰, 叶鹏盛, 李琼芳, 等. 哈茨木霉T23对花生的促生增产作用[J]. 云南农业大学学报, 2005, 20(1): 145-146. [26] 李卫平, 林福呈. 绿色木霉对蔬菜苗期病害的防治和促生作用[J]. 浙江农业学报, 2000, 12(2): 106-107. [27] Elad Y. Reasons for the delay in development of biological for foliar pathogens[J]. Phytoparasitica, 1990, 18(2): 99-104. [28] 赵蕾. 木霉菌的生物防治作用及其应用[J]. 生态农业研究, 1999, 7(1): 66-68. [29] Yariv B, Udi L, Takayuli T, et al. Trichoderma-Plant root colonization: escaping early plant defense responses and activation of the antioxidant machinery for saline stress tolerance[J]. PLoS Pathogens, 2013, 9(3): e1003221. [30] Contreras-Cornejo H A, Macías-Rodríguez L, Alfaro-Cuevas R, et al. Trichoderma spp. improve growth of Arabidopsis seedlings under salt stress through enhanced root development, osmolite production, and Na+elimination through root exudates[J]. Molecular Plant-Microbe Interactions, 2014, 27(6): 503-514. [31] Morán-Diez E, Rubio B, Domínguez S, et al. Transcriptomic response of Arabidopsis thaliana after 24 h incubation with the biocontrol fungus Trichoderma harzianum[J]. Journal of Plant Physiology, 2012, 169(6): 614-620. [32] Rubio M B, Quijada N M, Pérez E, et al. Identifying beneficial qualities of Trichoderma parareesei for plants[J]. Applied and Environmental Microbiology, 2014, 80(6): 1864-1873. [33] Viterbo A, Wiest A, Brotman Y, et al. The 18 mer peptaibols from Trichoderma virens elicit plant defence responses[J]. Molecular Plant Pathology, 2007, 8(60): 737-746. [34] Yedidia I, Shoresh M, Kerem Z, et al. Concomitant induction of systemic resistance to Pseudomonas siringae pv. lachrymans in cucumber by Trichoderma asperellum (T-203) and accumulation of phytoalexins[J]. Applied Environment Microbiology, 2003, 69(12): 7343-7353. [35] Mathys J, Timmermans P, Lievens B, et al. Genome-wide characterization of ISR induced in Arabidopsis thaliana by Trichoderma hamatum T382 against Botrytis cinerea infection[J]. Molecular Plant-Microbe Interactions, 2012, 3(108): 1-25. [36] Yang Y, Cammue B, Vos C, et al. Induced systemic resistance (ISR) signaling pathways involved in the Trichoderma hamatum-tomato-Botrytis cinerea tripartite interaction[J]. IOBC Bull, 2011, 8160(20): 25-31. [37] Ruocco M, Lanzuise S, Lombardi N, et al. Multiple roles and effects of a novel Trichoderma hydrophobin[J]. Molecular Plant-Microbe Interactions, 2015, 28(2): 167-179. [38] Korolev N, David D R, Elad Y. The role of phytohormones in basal resistance and Trichoderma-induced systemic resistance to Botrytis cinerea in Arabidopsis thaliana[J]. BioControl, 2008, 53(4): 667-683. [39] Brotman Y, Landau U, Cuadros-Inostroza A, et al. Trichoderma-plant root colonization: escaping early plant defense responses and activation of the antioxidant machinery for saline stress tolerance[J]. PLoS Pathogens, 2013, 9(3): 130-139. [40] Jacobs S, Zechmann B, Molitor A, et al. Broad-spectrum suppression of innate immunity is required for colonization of Arabidopsis roots by the fungus piriformospora indica[J]. Plant Physiology, 2011, 156(2): 726-740. [41] Yoshioka Y, Ichikawa H, Naznin H A, et al. Systemic resistance induced in Arabidopsis thaliana by Trichoderma asperellum SKT-1, a microbial pesticide of seedborne diseases of rice[J]. Pest Management Science, 2012, 68(1): 60-66. [42] Tan Y C, Wong M Y, Ho C L. Expression profiles of defence related cDNAs in oil palm (Elaeis guineensis Jacq.) inoculated with mycorrhizae and Trichoderma harzianum Rifai T32[J]. Plant Physiology and Biochemistry, 2015, 96: 296-300. [43] Tan Y C, Yeoh K A, Wong M Y, et al. Expression profiles of putative defence-related proteins in oil palm (Elaeis guineensis) colonized by Ganoderma boninense[J]. Journal of Plant Physiology, 2013, 170(16): 1455-1460. [44] 庄敬华, 高增贵, 杨长城, 等. 绿色木霉菌T23对黄瓜枯萎病防治效果及其几种防御酶活性的影响[J]. 植物病理学报, 2005, 35(2): 179-183. [45] Patel J S, Sarma B K, Singh H B, et al. Pseudomonas fluorescens and Trichoderma asperellum enhance expression of Gαsubunits of the pea heterotrimeric G-protein during Erysiphe pisi infection[J]. Frontiers in Plant Science, 2015, 6(48): 1-12. [46] Zachow C, Berg C, Monk J, et al. Endemic plants harbour specific Trichoderma communities with an exceptional potential for biocontrol of phytopathogens[J]. 2016, 3(49): 162-170. [47] Contreras-Cornejo H A, López-Bucio J S, Méndez-Bravo A, et al. Mitogen-activated protein kinase 6 and ethylene and auxin signaling pathways are involved in arabidopsis root-system chitecture alterations by Trichoderma atroviride[J]. Molecular Plant-Microbe Interactions, 2015, 28(6): 701-709. [48] Eibinger M, Sigl K, Sattelkow J, et al. Functional characterization of the native swollenin from Trichoderma reesei: study of its possible role as C1 factor of enzymatic lignocellulose conversion[J]. Biotechnol Biofuels, 2016, 9(1): 178. [49] Shoresh M, Harman G E, Mastouri F. Induced systemic resistance and plant responses to fungal biocontrol agents[J]. Annual Review of Phytopathology, 2010, 48: 21-43. [50] Palmieri M C, Perazzolli M, Matafora V, et al. Proteomic analysis of grapevine resistance induced by Trichoderma harzianum T39 reveals specific defence pathways activated against downy mildew[J]. Journal of Experimental Botany, 2012, 63(17): 6237-6251. |
[1] | AERZIGULI Rouzi, TURSUN·Ahmat, FU Kaiyun, DING Xinhua, ADILI Shataer, GUO Wenchao. Investigation and Diversity Analysis of Lady Beetle Resources in Corn Producing Areas of Xinjiang [J]. Chinese Journal Of Biological Control, 2020, 36(5): 697-707. |
[2] | SUN Yuanxing, HAO Yanan, LI Mingling. Effect of Supplementation of Artificial Diet before Storage on Cold Tolerance of Coccinella septempunctata [J]. Chinese Journal Of Biological Control, 2020, 36(5): 708-713. |
[3] | JING Yuling, GUO Rongjun, LI Shidong. Inspection on the Mechanisms of the Proportional Change of Fusarium oxysporum Associated Bacteria and Its Influence on Cucumber Growth [J]. Chinese Journal Of Biological Control, 2020, 36(5): 751-760. |
[4] | XU Shuai, XIE Xuewen, ZHANG Yun, SHI Yanxia, CHAI Ali, LI Lei, LI Baoju. Screening of Biocontrol Bacillus Isolate against Potato Fusarium Wilt and Its Biocontrol Effect [J]. Chinese Journal Of Biological Control, 2020, 36(5): 761-770. |
[5] | HUANG Jiexue, WANG Xiaolin, WU Jie, JI Muxiang. Application of Microbial Biocontrol Agents Combined with Organic Material Addition for Combating Strawberry Gray Mold [J]. Chinese Journal Of Biological Control, 2020, 36(5): 802-810. |
[6] | TIAN Junce, LU Yanhui, WANG Guorong, ZHENG Xusong, YANG Yajun, XU Hongxing, FANG Qi, YE Gongyin, ZANG Liansheng, Lü Zhongxian. The Parasitic Capability of Five Trichogramma Species on Eggs of Fall Armyworm Spodoptera frugiperda [J]. Chinese Journal Of Biological Control, 2020, 36(4): 485-490. |
[7] | LU Ziyun, YANG Xiaofan, MA Aihong, RAN Hongfan, LIU Wenxu, LI Jiancheng. Parasitic Potential of Microplitis tuberculifer on Spodoptera frugiperda Larvae [J]. Chinese Journal Of Biological Control, 2020, 36(4): 491-495. |
[8] | HUANG Chaolong, TANG Yin, HE Kanglai, WANG Zhenying. Predation of Chlaenius bioculatus Larvae to Larvae of Spodoptera frugiperda (Lepidoptera: Noctuidae) [J]. Chinese Journal Of Biological Control, 2020, 36(4): 507-512. |
[9] | LI Ping, LI Yuyan, XIANG Mei, WANG Mengqing, MAO Jianjun, CHEN Hongyin, ZHANG Lisheng. Predation Capacity of Chrysopa pallens Larvae to Young Larvae of Spodoptera frugiperda [J]. Chinese Journal Of Biological Control, 2020, 36(4): 513-519. |
[10] | WANG Yanan, ZHAO Shengyuan, HE Yunzhuan, WU Kongming, LI Guoping, FENG Hongqiang. Predation of the Larvae of Spodoptera frugiperda (J. E. Smith) by Sycanus croceouittatus Dohrn [J]. Chinese Journal Of Biological Control, 2020, 36(4): 525-529. |
[11] | PAN Hongsheng, LI Haobin, DING Ruifeng, LI Haiqiang, WANG Dongmei, AKEDAN·Wuwaishi, LIU Jian. Predation Capacity of Adonia variegata to Aphis atrata [J]. Chinese Journal Of Biological Control, 2020, 36(4): 628-631. |
[12] | LIAO Ping, SHI Xinru, GUO Yi, YIN Yanfang, ZHU Yanjuan, LI Yuyan, MAO Jianjun, WANG Mengqing, ZHANG Lisheng, CHEN Hongyin, LIU Chenxi. Influence of Low Temperature on Growth and Development of Arma chinensis Fallou (Hemiptera: Pentatomidae) [J]. Chinese Journal Of Biological Control, 2020, 36(3): 340-346. |
[13] | LI Lei, ZHAO Yurong, ZHENG Fei, SHI Yanxia, CHAI Ali, XIE Xuewen, LI Baoju. Screening and Biocontrol of Antagonistic Bacillus against Celery Soft Rot [J]. Chinese Journal Of Biological Control, 2020, 36(3): 388-395. |
[14] | JIA Ruimin, HU Lifang, WANG Tongtong, MA Qing, WANG Yang. Studies on Control Efficacy and Growth-Promotion Effect of Three Antagonistic Microbial Strains on Clubroot of Brassica oleracea [J]. Chinese Journal Of Biological Control, 2020, 36(3): 405-413. |
[15] | WU Xiyang, LUO Luyun, TAN Xinqiu, ZHANG Deyong, CHEN Yue, LIU Yong. Prokaryotic Expression of Atp2 Protein of Rhodopseudomonas palustris and Preliminary Screening of Interaction Protein in Magnaporthe oryzae [J]. Chinese Journal Of Biological Control, 2020, 36(3): 421-428. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||