[1] Wu M, Qin H, Chen Z, et al. Effect of long-term fertilization on bacterial composition in rice paddy soil[J]. Biology and Fertility of Soils, 2011, 47(4):397-405. [2] Zhou X, Yu G, Wu F. Soil phenolics in a continuously mono-cropped cucumber (Cucumis sativus L.) system and their effects on cucumber seedling growth and soil microbial communities[J]. European Journal of Soil Science, 2012, 63(3):332-340. [3] 孙瑞梁. 连作和芽胞杆菌对黄瓜枯萎病菌菌丝际细菌的影响[D]. 北京:中国农业科学院, 2018. [4] Ye S F, Yu J Q, Peng Y H, et al. Incidence of Fusarium wilt in Cucumis sativus L. is promoted by cinnamic acid, an autotoxin in root exudates[J]. Plant and Soil, 2004, 263(1):143-150. [5] 胡元森, 吴坤, 李翠香, 等. 黄瓜连作对土壤微生物区系影响Ⅱ——基于DGGE方法对微生物种群的变化分析[J]. 中国农业科学, 2007, 40(10):2267-2273. [6] 刘亚峰, 孙富林, 周毅, 等. 黄瓜连作对土壤微生物区系的影响Ⅰ——基于可培养微生物种群的数量分析[J]. 中国蔬菜, 2006(7):4-7. [7] Zhou X G, Liu J, Wu F Z. Soil microbial communities in cucumber monoculture and rotation systems and their feedback effects on cucumber seedling growth[J]. Plant and Soil, 2017, 415:507-520. [8] 高毓晗. 连作和有机改良对设施黄瓜番茄土壤性质和根际微生物种群结构的影响[D]. 北京:中国农业科学院, 2019. [9] Staněk M. Microorganisms in the hyphosphere of fungi. I. Introduction[J]. Czech Mycology, 1984, 38:1-10. [10] Deveau A, Labbé J. Mycorrhiza helper bacteria[M]//Deveau A, Labbe J L J. Molecular. Mycorrhizal Symbiosis. USA, 2016, 437-450. [11] Labbé J L, Weston D J, Dunkirk N, et al. Newly identified helper bacteria stimulate ectomycorrhizal formation in Populus[J]. Frontiers in Plant Science, 2014, 5:1-10. [12] Hrynkiewicz K, Baum C, Leinweber P. Mycorrhizal community structure, microbial biomass P and phosphatase activities under Salix polaris as influenced by nutrient availability[J]. European Journal of Soil Biology, 2009, 45(2):168-175. [13] Domínguez-Núez J, Muñz D, de la Cruz A, et al. Effects of Pseudomonas fluorescens on the water parameters of mycorrhizal and nonmycorrhizal seedlings of Pinus halepensis[J]. Agronomy, 2013, 3:571-582. [14] Li C, Massicote H, Moore L V H. Nitrogen fixing Bacillus sp. associated with Douglas-fir tuberculate ectomycorrhizae[J]. Plant and Soil, 1992, 140:35-40. [15] Paul L R, Chapman W K, Chanway C P. Diazotrophic bacteria reside inside Suillus tomentosus/Pinus contorta tuberculate ectomycorrhizae[J]. Botany, 2013, 91(1):48-52. [16] Fahad S, Hussain S, Bano A, et al. Potential role of phytohormones and plant growth-promoting rhizobacteria in abiotic stresses:consequences for changing environment[J]. Environmental Science and Pollution Research, 2015, 22:4907-4921. [17] Priyadharsini P, Muthukumar T. The root endophytic fungus Curvularia geniculata from Parthenium hysterophorus roots improves plant growth through phosphate solubilization and phytohormone production[J]. Fungal Ecology, 2017, 27:69-77. [18] 杨扬, 高克祥, 吴岩, 等. 吲哚乙酸跨界信号调节植物与细菌互作[J]. 生物技术通报, 2016, 32(8):14-21. [19] 刘缨, 王梦雨, 陈国参, 等. DDT降解菌株Chryseobacterium sp. PYR2对小麦的促生作用及其机理[J]. 微生物学通报, 2019, 46(6):1346-1355. [20] Hoffman M T, Gunatilaka M K, Wijeratne K, et al. Endohyphal bacterium enhances production of indole-3-acetic acid by a foliar fungal endophyte[J]. PLoS ONE, 2013, 8(9):e73132. [21] 李静, 张金羽, 张琪, 等. 玉米根际无机磷溶解菌的筛选与促生特性[J]. 应用与环境生物学报, 2019, 25(2):378-384. [22] 沈萍, 范秀容, 李广武. 微生物学实验[M]. 北京:高等教育出版社, 1999. [23] Nihorimbere A, Cawoy H, Alexandre Seyer, et al. Impact of rhizosphere factors on cyclic lipopeptide signature from the plant beneficial strain Bacillus amyloliquefaciens S499[J]. FEMS Microbiology Ecology, 2012, 79(1):176-191. [24] Schwyn B, Neilands J B. Universal chemical assay for the detection and determination of siderophores[J]. Analytical Biochemistry, 1987, 160(1):47-56. [25] Glickmann E, Dessaux Y. A critical examination of the specificity of the salkowski reagent for indolic compounds produced by phytopathogenic bacteria[J]. Applied and Environmental Microbiology, 1995, 61(2):793-796. [26] van de Mortel J E, de Vos R C H, Dekkers E, et al. Metabolic and transcriptomic changes induced in Arabidopsis by the rhizobacterium Pseudomonas fluorescens SS1011[W] [OA][J]. Plant Physiology, 2012, 160(4):2173-2188. [27] Berendsen R L, Vismans G, Yu K, et al. Disease-induced assemblage of a plant-beneficial bacterial consortium[J]. ISME Journal, 2018, 12:1496-1507. [28] Li X, Jousset A, de Boer W, et al. Legacy of land use history determines reprogramming of plant physiology by soil microbiome[J]. ISME Journal, 2019, 13(3):738-751. [29] Huang A C, Jiang T, Liu Y X, et al. A specialized metabolic network selectively modulates Arabidopsis root microbiota[J]. Science, 2019, 364(6440):546-564. [30] 王婷, 杨升, 陈亚雪, 等. 两株茶树内生草螺菌的微生物学特性[J]. 微生物学报, 2014, 54(4):424-432. [31] 邓琳, 王涛, 殷涂童, 等. 砒砂岩中植物促生芽孢杆菌的筛选及其对土壤的改良作用[J]. 水土保持通报, 2019, 39(5):211-217. [32] 马庆旭. 植物对氨基酸的吸收及pH和Cd胁迫对其吸收的影响机制[D]. 杭州:浙江大学, 2019. |