[1] Sparks A N. A review of the biology of the fall armyworm[J]. Florida Entomology, 1979, 62(2):82-87. [2] Montezano D G, Specht A, Sosa-Gómez D R, et al. Host plants of Spodoptera frugiperda (Lepidoptera:Noctuidae) in the Americas[J]. African Entomology, 2018, 26(2):286-300. [3] 姜玉英, 刘杰, 朱晓明. 草地夜袭我国的发生动态和未来趋势分析[J]. 中国植物保护杂志, 2019, 39(2):33-35. [4] Dumas P, Legeai F, Lemaitre C, et al. Spodoptera frugiperda (Lepidoptera:Noctuidae) host-plant variants:two host strains or two distinct species?[J]. Genetica, 2015, 143(3):305-316. [5] 张磊, 靳明辉, 张丹丹, 等. 入侵云南草地贪夜蛾的分子鉴定[J]. 植物保护, 2019, 45(2):19-24. [6] 王磊, 陈科伟, 陆永跃. 我国草地贪夜蛾入侵扩张动态与发生趋势预测[J]. 环境昆虫学报, 2019, 41(4):683-694. [7] Burtet L M, Bernardi O, Melo A A. Managing fall armyworm, Spodoptera frugiperda (Lepidoptera:Noctuidae), with Bt maize and insecticides in south Brazil[J]. Pest Management Science, 2017, 73(12):2569-2577. [8] Food and Agriculture Organization of the United Nations. Integrated management of the fall armyworm on maize. A guide for farmer field schools in Africa[R]. 2018. Http://www.Fao.Org/3/i8741en/I8741EN.pdf. [9] Yu S J. Insecticide resistance in the fall armyworm, Spodoptera frugiperda (J. E. Smith)[J]. Pesticide Biochemistry and Physiology, 1991, 39(1):84-91. [10] Yu S J. Detection and biochemical characterization of insecticide Resistance in fall armyworm (Lepidoptera:Noctuidae)[J]. Journal of Economic Entomology, 1992, 85(3):675-682. [11] Rios-diez J D, Saldamando-benjumea C I. Susceptibility of Spodoptera frugiperda (Lepidoptera:Noctuidae) strains from central Colombia to two insecticides, methomyl and lambda-cyhalothrin:a study of the genetic basis of resistance[J]. Journal of Economic Entomology, 2011, 104(5):1698-1705. [12] Zhu Y, Blanco C A, Portilla M, et al. Evidence of multiple/cross resistance to Bt and organophosphate insecticides in Puerto Rico population of the fall armyworm, Spodoptera frugiperda[J]. Pesticide Biochemistry and Physiology, 2015, 122:15-21. [13] Clarkson J M, Charnley A K. New insights into them mechanisms of fungal pathogenesis in insects[J]. Trends Microbiology, 1996, 4(5):197-203. [14] de Faria, M R, Wraight, S P. Wraight mycoinsecticides and mycoacaricides:A comprehensive list with worldwide coverage and international classification of formulation types[J]. Biological Control 2007, 43(3):237-256. [15] McGaughey W H, Whalon M E. Managing insect resistance to Bacillus thuringiensis toxins[J]. Science; 1992, 258(5087):1451-1455. [16] Huang F, Qureshi J A, Head G P, et al. Frequency of Bacillus thuringiensis Cry1A.105 resistance alleles in field populations of the fall armyworm, Spodoptera frugiperda, in Louisiana and Florida[J]. Crop Protection, 2016, 83:83-89 [17] Li G, Reisig D, Miao J, et al. Frequency of Cry1F non-recessive resistance alleles in North Carolina field populations of Spodoptera frugiperda (Lepidoptera:Noctuidae)[J]. PLoS ONE, 2016, 11(4):e0154492. [18] Chandrasena D I, Signorini A M, Abratti G, et al. Characterization of field-evolved resistance to Bacillus thuringiensis-derived Cry1F δ-endotoxin in Spodoptera frugiperda populations from Argentina[J]. Pest Management Science, 2018, 74(3):746-754. [19] 赵胜园, 杨现明, 孙小旭, 等. 常用生物农药对草地夜宵的室内防效[J]. 植物保护, 2019, 45(3):21-26. [20] 中国农药信息网(http://www.chinapesticide.org.cn/hysj/index.jhtml) 2019. [21] Wang G., Zhang J, Song F, et al. Engineered Bacillus thuringiensis G033A with road insecticidal activity against Lepidopteran and Coleopteran pests[J]. Applied Microbiology and Biotechnology, 2006, 72:924-930. [22] 王广君, 张杰, 宋福平等. 苏云金芽胞杆菌工程菌G033A及其制备方法[P]. 中国发明专利. (ZL200310100197.8). [23] 唐启义, 冯明光. 实用统计分析及其DPS数据处理系统[M]. 北京:科学出版社, 2002. [24] 胡丰林, 樊美珍, 李增智. 一种白僵菌代谢产物中生物活性物质的研究I:具有清除自由基的活性物质的分离和制备菌物系统[J]. 菌物系统, 2000, 19(4):522-528. [25] Kershaw M J, Moorhouse E R, Bateman R, et al. The role of destruxins in the pathogenicity of Metarhizium anisopliae for three species of insects[J]. Journal of Invertebrate Pathology, 1999, 74:213-223. [26] 邝灼彬, 吕利华, 冯夏, 等. 温度及常见农药对球孢白僵菌生物学特性的影响[J]. 华南农业大学学报, 2005, 26(3):26-29. [27] 汪敏捷, 刘强. 不同温湿度下绿僵菌对红缘天牛幼虫致病力的影响[J]. 环境昆虫学报, 2014, 36(2):151-156. [28] Faust G M, Abe K, Held G A, et al. Evidence for plasmid-associated crystal toxin production in Bacillus thuringiensis subsp. israelensis[J]. Plasmid, 1983, 9(1):98-103 [29] Mwamburi L A, Laing M D, Miller R. Interaction between Beauveria bassiana and Bacillus thuringiensis var. israelensis for the control of house fly larvae and adults in poultry houses[J]. Poultry Science, 2009, 88(4):2307-2314. [30] Wakil W, Ghazanfar M U, Riasat T, et al. Effects of interactions among Metarhizium anisopliae, Bacillus thuringiensis and chlorantraniliprole on the mortality and pupation of six geographically distinct Helicoverpa armigera field populations[J]. Phytoparasitica, 2013, 41(2):221-234. [31] Ali K, Wakil W, Zia K, et al. Control of Earias vittella (Lepidoptera:Noctuidae) by Beauveria bassiana along with Bacillus thuringiensis[J]. International Journal of Agriculture and Biology, 2015, 17, 773-778. [32] Yaroslavtseva O N, Dubovskiy I M, Khodyrev V P, et al. Immunological mechanisms of synergy between fungus Metarhizium robertsii and bacteria Bacillus thuringiensis ssp. morrisoni on Colorado potato beetle larvae[J]. Journal of Insect Physiology, 2017, 96(1):14-20. |