[1] Atayi-Oyetunde O O, Bradley C A. Rhizoctonia solani:taxonomy, population biology and management of rhizoctonia seedling disease of soybean[J]. Plant Pathology, 2018, 67(1):3-17. [2] Heydari A, Misaghi I J. The role of rhizosphere bacteria in herbicide-mediated increase in Rhizoctonia solani induced cotton seedling damping-off[J]. Plant and Soil, 2003, 257(2):391-396. [3] Anderson N A. The genetics and pathology of Rhizoctonia solani[J]. Annual Review of Phytopathology, 1982, 20(1):329-347. [4] Vidhyasekaran P, Ruby ponmalar T, Samiyappan R, et al. Host-specific toxin production by Rhizoctonia solani, the rice sheath blight pathogen[J]. Phytopathology, 1997, 87(12):1258-1263. [5] 杨雪,谢永丽,陈兰,等.青海极端生境7株萎缩芽孢杆菌的生物活性[J].福建农林大学学报(自然科学版), 2020, 49(4):459-466. [6] 孙崇思,陈晓敏,束长龙,等.对大丽轮枝菌具有拮抗作用的萎缩芽胞杆菌的分离和鉴定[J].植物保护, 2014, 40(1):30-37. [7] 薛鹏琦,刘芳,乔俊卿,等.油菜菌核病生防芽孢杆菌的分离鉴定及其脂肽化合物分析[J].植物保护学报, 2011, 38(2):127-132. [8] 李春,武占省,樊艳爽,等.一株萎缩芽孢杆菌株DPPG-28及其在作物病害防治方面的应用:CN201410461213.4[P]. 2015.04.22. [9] Chen L, Zhang H, Zhao S F, et al. Lipopeptide production by Bacillus atrophaeus strain B44 and its biocontrol efficacy against cotton rhizoctoniosis[J]. Biotechnology Letters, 2021, 43:1183-1193. [10] 陈帅康,肖木,迪丽努尔,等.嗜果刀孢菌的室内药剂筛选及拮抗菌的种类鉴定[J].果树学报, 2023, 40(10):2229-2240. [11] 罗文芳.水稻纹枯病生防菌的筛选与作用机制的初步研究[D].沈阳:沈阳农业大学, 2018. [12] 布坎南R E,吉本斯N E.伯杰细菌鉴定手册[M].北京:科学出版社, 1984. [13] Gamini S J, Maureen P T, Alan C L, et al. Metabolites from an antarctic sponge-associated bacterium, Pseudomonas aeruginosa[J]. Journal of Natural Products, 1996, 59(3):293-296. [14] Valdivia L G, Pérez E T, López A C, et al. Identification and characterization of a new Bacillus atrophaeus strain B5 as biocontrol agent of postharvest anthracnose disease in soursop (Annona muricata) and avocado (Persea americana)[J]. Microbiological Research, 2018, 210:26-32. [15] 朱杰,程亮,张纲,等.樱桃叶斑病生防菌株萎缩芽孢杆菌菌株QH-588的筛选鉴定[J].南方农业学报, 2021, 52(11):3022-3033. [16] Veerubommu S, Himankshi T, Samriti G. Use of chitinolytic Bacillus atrophaeus strain S2BC-2 antagonistic to Fusarium spp. for control of rhizome rot of ginger[J]. Annals of Microbiology, 2013, 63(3):989-996. [17] Dunlap C A, Bowman M J, Rooney A P. Iturinic lipopeptide diversity in the Bacillus subtilis species group important antifungals for plant disease biocontrol applications[J]. Frontiers in Microbiology, 2019, 10:1794. [18] Zhang X, Li B, Wang Y, et al. Lipopeptides, a novel protein, and volatile compounds contribute to the antifungal activity of the biocontrol agent Bacillus atrophaeus CAB-1[J]. Applied Microbiology and Biotechnology, 2013, 97:9525-9534. [19] 吕倩. 2株深海来源细菌的抗真菌活性代谢产物研究[D].北京:中国科学院大学, 2013. [20] 刘邮洲,陈夕军,梁雪杰,等.一株萎缩芽胞杆菌YL3的鉴定及其脂肽类化合物分析[J].中国生物防治学报, 2017, 33(1):142-150. [21] Ström K, Sjögren J, Broberg A, Schnürer J. Lactobacillus plantarum MiLAB 393 produces the antifungal cyclic dipeptides cyclo (L-Phe-L-Pro) and cyclo (L-Phe-trans-4-OH-L-Pro) and 3-phenyllactic acid[J]. Applied and Environmental Microbiology, 2002, 68(9):4322-4327. [22] Jamal Q, Cho J Y, Moon J H, et al. Purification and antifungal characterization of Cyclo (D-Pro-L-Val) from Bacillus amyloliquefaciens Y1 against Fusarium graminearum to control head blight in wheat[J]. Biocatalysis Agricultural Biotechnology, 2017, 10:141-147. [23] Cimmino A, Bejarano A, Masi M, et al. Isolation of 2,5-diketopiperazines from Lysobacter capsici AZ78 with activity against Rhodococcus fascians[J]. Natural Product Research, 2021, 35(23):4969-4977. |