Chinese Journal of Biological Control ›› 2025, Vol. 41 ›› Issue (1): 207-219.DOI: 10.16409/j.cnki.2095-039x.2024.07.004
• TECHNICAL REVIEWS • Previous Articles
WEI Lei1, NIE Ying1, LI Yongjun2
Received:
2024-02-08
Published:
2025-03-21
CLC Number:
WEI Lei, NIE Ying, LI Yongjun. Research Progress on Green and Sustainable Management Technologies for Spodoptera frugiperda[J]. Chinese Journal of Biological Control, 2025, 41(1): 207-219.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zgswfz.com.cn/EN/10.16409/j.cnki.2095-039x.2024.07.004
[1] 吴秋琳, 姜玉英, 吴孔明. 草地贪夜蛾缅甸虫源迁入中国的路径分析[J]. 植物保护, 2019, 45(2): 1-6, 18. [2] 王磊, 陈科伟, 钟国华, 等. 重大入侵害虫草地贪夜蛾发生危害、防控研究进展及防控策略探讨J]. 环境昆虫学报, 2019, 41(3): 479-487. [3] 刘博, 李志红, 郭韶堃. 草地贪夜蛾入侵机制概述[J]. 植物保护学报, 2022, 49(5): 1313-1328. [4] 王芹芹, 崔丽, 王立, 等. 草地贪夜蛾对杀虫剂的抗性研究进展[J]. 农药学学报, 2019, 21(4): 401-408. [5] 牛多邦, 檀称龙, 吴玉杰, 等. 安徽省草地贪夜蛾对杀虫剂的敏感性和靶标突变检测[J]. 植物保护, 2022, 48(2): 201-207. [6] 王芹芹, 崔丽, 王立, 等. 草地贪夜蛾防控技术进展及我国对策建议[J]. 现代农药, 2020, 19(3): 1-6. [7] 陈万斌, 李玉艳, 王孟卿, 等. 草地贪夜蛾的天敌昆虫资源、应用现状及存在的问题与建议[J]. 中国生物防治学报, 2019, 35(5): 658-673. [8] 唐璞, 王知知, 吴琼, 等. 草地贪夜蛾的天敌资源及其生物防治中的应用[J]. 应用昆虫学报, 2019, 56(3): 370-381. [9] Nixon G. Some asiatic telenomine (Hym., Proctotrupoidea)[J]. Annals and Magazine of Natural History,1937, 20(10): 444-475. [10] Cave R D. Biology, ecology and use in pest management of Telenomus remus[J]. Biocontrol News and Information, 2000, 21(1): 21-26. [11] Patel R C, Yadav D N, Saramma P U. Impact of mass releases of Chelonus heliopae Gupta and Telenomus remus Nixon against Spodoptera litura (Fabricius)[J]. Journal of Entomological Research, 1979(3): 53-56. [12] Waddill H, Whitcomb W H. Release of Telenomus remus (Hym.Scelionidae) against Spodoptera frugiperda (Lep.:Noctuidae) in Florida, U. S. A[J]. Entomophaga, 1982, 27(2): 159-162. [13] Hernandez D, Ferrer F, Linares B. Introducción de Telenomus remus Nixon (Hym.:Scelionidae) para controlar Spodopera frugiperda (Lep.:Noctuidae) en Yaritagua-Venezuela[J]. Agronomía Tropical,1989, 39: 199-205. [14] 陈丽, 陈科伟, 许再福, 等. 夜蛾黑卵蜂(Telenomus remus Nixon)对甜菜夜蛾信息化合物的嗅觉反应[J].长江蔬菜, 2010(18): 4-7. [15] 李志刚, 吕欣, 押玉柯, 等. 粤港两地田间发现夜蛾黑卵蜂与螟黄赤眼蜂寄生草地贪夜蛾[J]. 环境昆虫学报, 2019, 41(4): 760-765. [16] 唐继洪, 吕宝乾, 卢辉, 等. 海南草地贪夜蛾寄生蜂调查与基础生物学观察[J]. 热带作物学报, 2020, 41(6): 1189-1195. [17] 谢丽玲, 何瞻, 龙秀珍, 等. 两种草地贪夜蛾卵寄生蜂的田间寄生作用调查[J]. 植物保护, 2022, 48(1): 265-271. [18] 霍梁霄, 周金成, 宁素芳. 夜蛾黑卵蜂寄生草地贪夜蛾和斜纹夜蛾卵的生物学特性[J]. 植物保护, 2019, 45(5): 60-64. [19] 赵旭, 朱凯辉, 张柱亭, 等. 夜蛾黑卵蜂对草地贪夜蛾田间防效的初步评价[J]. 植物保护, 2020, 46(1): 74-77. [20] 杨文俊, 葛毅, 周婉, 等.不同因子对夜蛾黑卵蜂寄生能力的影响[J]. 安徽科技学院学报, 2023, 37(5): 46-50. [21] Vieira N F, Pomari-Fernandes A, Lemes A A F, et al. Cost of production of Telenomus remus (Hymenoptera: Platygastridae) grown in natural and alternative hosts[J]. Journal of Economic Entomology, 2017, 110(6): 2724-2726. [22] Pomari-Fernandes A, Bueno A F, Queiroz A P, et al. Biological parameters and parasitism capacity of Telenomus remus Nixon (Hymenoptera: Platygastridae) reared on natural and factitious hosts for successive generations[J]. African Journal of Agricultural Research, 2015, 10(33): 3225-3233. [23] 吴志美, 詹莜国, 柯昌磊, 等. 规模扩繁夜蛾黑卵蜂的寄主筛选[J]. 中国生物防治学报, 2021, 37(6): 1140-1145. [24] 谢永辉, 王春娅, 陈雅琼, 等. 利用斜纹夜蛾规模化繁育夜蛾黑卵蜂的初步研究[J]. 中国生物防治学报, 2021, 37(6): 1146-1151. [25] Dequech S T B, Camera C, Sturza V S, et al. Population fluctuation of Spodoptera frugiperda eggs and natural parasitism by Trichogramma in maize[J]. Acta Scientiarum, 2013, 35(3): 295-300. [26] Morales J, Vásquez C, Perez B N L, et al. Especies de Trichogramma (Hymenoptera: Trichogrammatidae) parasitoides dehuevos de lepidópteros en elestado lara, venezuela[J]. Neotropical Entomology, 2007, 36(4): 542-546. [27] Figueiredo M D L C, Cruz I, Silva R B, et al. Biological control with Trichogramma pretiosum increases organic maize productivity by 19.4%[J]. Agronomy for Sustainable Development, 2015, 35(3): 1175-1183. [28] 朱凯辉, 周金成, 张柱亭, 等. 短管赤眼蜂对草地贪夜蛾和斜纹夜蛾不同日龄卵的寄生能力及子代蜂适合度[J]. 植物保护, 2019, 45(5): 54-59. [29] 朱凯辉, 周金成, 张柱亭, 等. 短管赤眼蜂和夜蛾黑卵蜂防治草地贪夜蛾田间竞争的初步评价[J]. 植物保护, 2020, 46(2): 267-271. [30] 周婉, 杨文俊, 徐琢, 等. 安徽省草地贪夜蛾天敌资源调查与鉴定[J]. 安徽科技学院学报, 2022, 36(5): 35-41. [31] 张红艳, 张晶晶, 王珊珊, 等. 缘腹茧蜂对草地贪夜蛾的寄生能力及子代发育情况研究[J]. 河南农业科学, 2021,50(5): 86-91. [32] 刘格, 杨漫, 岳永超, 等. 蜂日龄和寄生经历对缘腹绒茧蜂寄生草地贪夜蛾潜能的影响[J]. 吉林农业大学学报, https://doi.org/10.13327/ j.jjlau.2024.20246. [33] 巨学阳, 薛蓉蓉, 童璐, 等. 草地贪夜蛾幼虫日龄及取食的食物对淡足侧沟茧蜂寄生效果的影响[J]. 中国生物防治学报, 2021, 37(6): 1126-1132. [34] 何朋阳, 李贤, 刘同先, 等. 产卵次数和寄主幼虫龄期对草地贪夜蛾寄生蜂螟蛉盘绒茧蜂生物学特性的影响[J]. 昆虫学报, 2023, 66(8): 1095-1104. [35] 宁素芳, 周金成, 张柱亭, 等. 贵州省黔东南地区发现草地贪夜蛾的5 种寄生性天敌及其两种重寄生蜂[J]. 植物保护, 2019, 45(6): 39-42. [36] 高祖鹏, 唐照磊, 郭井菲, 等. 广西崇左发现一种草地贪夜蛾幼虫寄生性天敌——日本追寄蝇[J]. 中国生物防治学报, 2001, 37(6): 1166-1171. [37] 史永善. 美国白蛾的天敌——日本追寄蝇[J]. 昆虫学报, 1981, 24(3): 342. [38] 赵鹏飞, 常明山, 罗辑, 等. 日本追寄蝇对替代寄主的选择性[J]. 广西林业科学, 2020, 49(4): 583-586. [39] 丁奎婷, 杜素洁, 杨念婉, 等. 草地贪夜蛾综合防控技术研究进展[J]. 生物安全学报, 2023, 32(4): 291-302. [40] 任雪敏, 徐志文, 赵斌, 等. 草地贪夜蛾的捕食性天敌昆虫研究进展[J]. 江苏农业科学, 2022, 50(8): 15-22. [41] 王亚楠, 赵胜园, 何运转, 等. 黄带犀猎蝽对草地贪夜蛾幼虫的捕食作用[J]. 中国生物防治学报, 2020(4): 525-529. [42] Leger R J S, Wang C. Genetic engineering of fungal biocontrol agents to achieve greater efficacy against insect pests[J]. Applied Microbiology and Biotechnology, 2010, 85(4): 901-907. [43] 林华峰. 虫生真菌研究进展(综述)[J]. 安徽农业大学学报, 1998, 29(3): 251-254. [44] Cabi. Datasheet report for Spodoptera frugiperda(fall armyworm)[EB/OL].2019.https://www.cabi.org/isc/datasheet/29810#tonaturalEnemies. [45] Garciá C, Bautista A N. Pathogenicity of isolates of entomopathogenic fungi against Spodoptera frugiperda (Lepidoptera: Noctuidae) and Epilachna varivestis (Coleoptera:Coccinellidae)[J]. Revista Colombiana De Entomologia, 2011, 37(2): 217-222. [46] Cruz-Avalos A M, Bivián-Hernández M D L Á, Ibarra J E, et al. High virulence of Mexican entomopathogenic fungi against fall armyworm, (Lepidoptera: Noctuidae)[J]. Journal of Economic Entomology, 2019, 112(1): 99-107. [47] Ramanujam B, Poornesha B, Shylesha A N. Effect of entomopathogenic fungi against invasive pest Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) in maize[J]. Egyptian Journal of Biological Pest Control, 2020, 30(1): 1-5. [48] Prasanna B M, Huesing J E, Eddy R, et al. Fall armyworm in Africa: a guide for integrated pest management[M]. Mexico: CIMMYT, USAID, 2018. [49] 苟雪莲, 王振营, 涂雄兵, 等. 两株虫生真菌对草地贪夜蛾的致病力及高毒力菌株与卵寄生蜂的相容性[J]. 植物保护学报, 2022, 49(5): 1505-1512. [50] 邹春华, 刘继辉, 吴伟, 等. 草地贪夜蛾病原白僵菌的分离鉴定及其致病力研究[J]. 植物保护, 2023, 49(6): 242-246. [51] 庞继鑫, 温绍海, 杜广祖, 等. 一株侵染草地贪夜蛾成虫的球孢白僵菌的分离鉴定[J]. 植物保护, 2022, 48(1): 185-190. [52] Roddam L F, Rath A C. Isolation and characterization of Metarhizium anisopliae and Beauveria bassiana from Subantarctic Macquarie Island[J]. Journal of Invertebrate Pathology, 1997, 69(3): 285-288. [53] 王华峰, 裴俊伟, 纪丽莲, 等. 绿僵菌对植物促生作用的研究进展[J]. 生命科学, 2023, 35(8): 1052-1059. [54] Álvarez S P, Guerrero A M, Duarte B N D, et al. First report of a new isolate of Metarhizium rileyi from maize fields of Quivicán, Cuba[J]. Indian Journal of Microbiology, 2018, 58(2): 222-226. [55] Ruiz-Nájera R E, Ruiz-Estudillo R A, Sánchez-Yánez J M, et al. Occurrence of entomopathogenic fungi and parasitic nematodes on Spodoptera frugiperda (Lepidoptera:Noctuidae) larvae collected in central Chiapas, México[J]. Florida Entomologist, 2013, 96(2): 498-503. [56] 郑亚强, 胡惠芬, 付玉飞, 等. 草地贪夜蛾莱氏绿僵菌的分离鉴定[J]. 植物保护, 2019, 45(5): 65-70. [57] 雷妍圆, 王德森, 薛志洪, 等. 广州地区一株绿僵菌的鉴定及其对草地贪夜蛾的致病力测定[J]. 南方农业学报, 2020, 51(6): 1265-1273. [58] 胡飞, 徐婷婷, 彭辉, 等. 莱氏绿僵菌Mr006鉴定及对草地贪夜蛾致病力[J]. 中国生物防治学报, 2024, 40(1): 44-51. [59] 庞继鑫, 肖关丽, 杜广祖, 等. 一株罹病草地贪夜蛾成虫莱氏绿僵菌的分离鉴定及其致病力[J]. 中国生物防治学报, 2023, 39(2): 331-339. [60] 刘则. 淡紫紫孢菌PL-1的分离鉴定及其对桃蚜和草地贪夜蛾的杀虫活性研究[D]. 合肥: 安徽农业大学, 2022. [61] 徐国力, 王泽宇, 王奎, 等. 苏云金芽胞杆菌防治草地贪夜蛾的研究和应用进展[J]. 中国生物防治学报, 2024, 40(5): 1181-1193. [62] National Pesticide Information Center. NPIC Product Research Online(NPRO)[EB/OL].(2022)[2023-01-11]. http://npic.orst.edu/NPRO/. [63] Hernández-Rodríguez C S, Hernández-Martínez P, Van Rie J, et al. Shared midgut binding sites for Cry1A.105, Cry1Aa, Cry1Ab, Cry1Ac and Cry1Fa proteins from Bacillus thuringiensis in two important corn pests, Ostrinia nubilalis and Spodoptera frugiperda[J]. PLoS ONE, 2013, 8(7): e68164. [64] Sena J A, Hernández-Rodríguez C S, Ferré J. Interaction of Bacillus thuringiensis Cry1 and Vip3A proteins with Spodoptera frugiperda midgut binding sites[J]. Applied and Environmental Microbiology, 2009, 75(7): 2236-2237. [65] Fang J, Xu X L, Wang P, et al. Characterization of chimeric Bacillus thuringiensis Vip3 toxins[J]. Applied and Environmental Microbiology, 2007, 73(3): 956-961. [66] Caccia S, Chakroun M, Vinokurov K, et al. Proteolytic processing of Bacillus thuringiensis Vip3A proteins by two Spodoptera species[J]. Journal of Insect Physiology, 2014, 67: 76-84. [67] Banyuls N, Hernández-Rodríguez C S, Van Rie J, et al. Critical amino acids for the insecticidal activity of Vip3Af from Bacillus thuringiensis: Inference on structural aspects[J]. Scientific Reports, 2018, 8(1): 1-14. [68] Gómez I, Rodríguez-Chamorro D E, Flores-Ramírez G, et al. Spodoptera frugiperda (J. E.Smith) Aminopeptidase N1 is a functional receptor of the Bacillus thuringiensis Cry1Ca toxin[J]. Applied and Environmental Microbiology, 2018, 84(17): e01089-18. [69] Wang Y F, Wang J L, Fu X, et al. Bacillus thuringiensis Cry1Da_7 and Cry1B.868 protein interactions with novel receptors allow control of resistant fall armyworms, Spodoptera frugiperda (J.E. Smith)[J]. Applied and Environmental Microbiology, 2019, 85(16): e00579-19. [70] 武怀恒, 向礼波, 李文静, 等. 短稳杆菌对草地贪夜蛾的杀虫活性及其体内解毒酶的影响[J]. 南方农业学报, 2022, 53(10): 2904-2910. [71] 孙明凯. 生防菌FCA-1分离鉴定及其对草地贪夜蛾致病力和肠道酶活及微生物的影响[D]. 海口: 海南大学, 2021. [72] 吴正伟, 刘始迎, 郑碧瑜, 等. 一株分离自红树林沙雷氏菌的鉴定及杀虫活性测定[J]. 广东海洋大学学报, 2021, 41(1): 33-38. [73] Arive I B. Regulation of multiple infection in Alphabaculoviruses: critical factors that determine success[D]. Universidad Publica de Navarra (Spain), 2014. [74] 程露强. 我国不同地理种群草地贪夜蛾对其核型多角体病毒( SfMNPV)敏感性及影响因子研究[D].扬州: 扬州大学, 2021. [75] Escribano A, Williams T, Goulson D, et al. Selection of a nucleopolyhedrovirus for control of Spodoptera frugiperda (Lepidoptera: Noctuidae) genetic, and biological comparison of four isolates from the Americas[J]. Journal of Economic Entomology, 1999, 92(5): 1079-1085. [76] 佚名.含有草地贪夜蛾核型多角体病毒的新型杀虫剂在巴西推出[J]. 农药, 2021, 60(11): 793. [77] 张海波, 王风良, 陈永明, 等. 核型多角体病毒对玉米草地贪夜蛾的控制作用研究[J]. 植物保护, 2020, 46(2): 254-260. [78] 靳雯怡, 佟岩, 孟茜, 等. 苜蓿银纹夜蛾核型多角体病毒在宿主草地贪夜蛾选择压力下的毒力和基因变异[J]. 环境昆虫学报, 2021, 43(5): 1129-1135. [79] Lezama-Gutierrez R, Hamm J J, Molina-Ochoa J, et al. Occurrence of entomopathogens of Spodoptera frugiperda (Lepidoptera :Noctuidae) in the Mexican states of Michoacan, Colima, Jalisco and Tamaulipas[J]. Florida Entomologist, 2001, 84(1): 23-30. [80] Molina-Ochoa J, Lezama-Gutierrez R, Gonzalez-Ramirez M, et al. Pathogens and parasitic nematodes associated with populations of fall armyworm (Lepidoptera : Noctuidae) larvae in Mexico[J]. Florida Entomologist, 2003, 86(3): 244-253. [81] 梁铭荣, 李子园, 戴钎萱, 等. 4种昆虫病原线虫对草地贪夜蛾的致死作用[J]. 生物安全学报, 2020, 29(2): 82-89. [82] 蔡佳仪, 张小涵, 刘奇志, 等. 昆虫病原线虫对草地贪夜蛾幼虫的致死率及田间防治效果[J]. 生物安全学报, 2023, 32(1): 56-62. [83] 杨淋凯, 朱小芳, 钱秀娟, 等. 甘肃省5 种昆虫病原线虫对草地贪夜蛾的致病力测定[J]. 草业科学, 2021, 38(10): 2069-2076. [84] Sánchez J, Valle J, Pérez E, et al. Biological control of Spodoptera frugiperda in Zea mays culture:Use of entomopathogenic nematodes[J]. Scientia Agropecuaria, 2019, 10(4): 551-557. [85] 杨平, 李素春. 温度对昆虫病原线虫发育和感染力的影响[J]. 昆虫知识, 1988, 25(5): 300-302. [86] Gouge D H, Lee L L, Henneberry T J. Effect of temperature and lepidopteran host species on entomopathogenic nematode (Nematoda:Steinernematidae, Heterorhabditidae) infection[J]. Environmental Entomology, 1999, 28(5): 876-883. [87] Glazer I, Klein M, Navon A, et al. Comparison of efficacy of entomopathogenic nematodes combined with antidesiccants applied by canopy sprays against three cotton pests (Lepidoptera:Noctuidae) [J]. Journal of Economic Entomology, 1992, 85(5): 1636-1641. [88] Shapiro-Ilan D I, Gouge D H, Piggott S J, et al. Application technology and environmental considerations for use of entomopathogenic nematodes in biological control[J]. Biological Control, 2006, 38(1): 124-133. [89] 钱秀娟, 张世鹏, 谢攀, 等. 紫外辐射对9 个昆虫病原线虫品系存活率和致病力的影响[J]. 中国生态农业学报, 2019, 27(6): 836-844. [90] Stentiford G D, Becnel J J, Weiss L M, et al. Microsporidia-emergent pathogens in the global food chain[J]. Trends in Parasitology, 2016, 32(4): 336-348. [91] Patel P N, Habib M E. Protozoosis caused by Vairimorpha necatrix (Microsporia, Nosematidae) in larvae of Spodoptera frugiperda (Lepidoptera, Noctuidae)[J]. Revista Brasileira De Zoologia,1988, 5(4): 593-598. [92] 张海剑, 孙雪莲, 郝浩阳, 等. 草地贪夜蛾病原微孢子虫的鉴定及其致病力分析[J]. 植物保护学报, 2022, 49(5): 1513-1520. [93] 葛阳, 孙嘉惠, 王铁霖, 等. 药源植物在草地贪夜蛾防控中的应用研究进展[J]. 植物保护学报, 2020, 47(4): 706-718. [94] de Menezes C W G, Carvalho G A, Alves D S, et al. Biocontrol potential of methyl chavicol for managing Spodoptera frugiperda (Lepidoptera: Noctuidae), an important corn pest[J]. Environmental Science and Pollution Research, 2020, 27(5): 5030-5041. [95] Bermúdez-Torres K, Herrera J M, Brito R F, et al. Activity of quinolizidine alkaloids from three Mexican Lupinus against the lepidopteran crop pest Spodoptera frugiperda[J]. Bio-Control, 2009, 54(3): 459-466. [96] Rioba N B, Stevenson P C. Opportunities and scope for botanical extracts and products for the management of fall armyworm (Spodoptera frugiperda) for small holders in Africa[J]. Plants, 2020, 9(2): 207. [97] Salinas-Sánchez O D, Aldana-Llanos L, Valdés-Estrada M E, et al. Insecticidal activity of Tagetes erecta extracts on Spodoptera frugiperda (Lepidoptera: Noctuidae)[J]. Florida Entomologist, 2012, 95(2): 428-432. [98] Chidawanyika F, Mudavanhu P, Nyamukondiwa C. Global climate change as a driver of bottom-up and top-down factors in agricultural landscapes and the fate of host-parasitoid interactions[J]. Frontiers in Ecology and Evolution, 2019, 7: 80. [99] 周晨旭. 氮素上行效应对玉米-草地贪夜蛾-斜纹夜蛾侧沟茧蜂的影响[D]. 合肥: 安徽农业大学, 2022, 5. [100] Midega C A O, Pittchar J O, Pickett J A, et al. A climate-adapted push-pull system effectively controls fall armyworm, Spodoptera frugiperda ( J E Smith), in maize in East Africa[J]. Crop Protection, 2018, 105: 10-15. [101] Wu F F, Zhang L, Liu Y Q, et al. Population development, fecundity, and flight of Spodoptera frugiperda (Lepidoptera: Noctuidae) reared on three green manure crops: implications for an ecologically based pest management approach in China[J]. Journal of Economic Entomology, 2022, 115(1): 124-132. [102] 任学祥, 胡本进, 苏贤岩, 等. 安徽发现草地贪夜蛾区别为害麦玉/麦豆轮作田小麦[J]. 植物保护, 2020(2): 287-288. [103] 郭井菲, 韩海亮, 何康来, 等. 草地贪夜蛾在玉米单作及玉米大豆间作田的扩散规律[J]. 植物保护, 2022, 48(1): 110-115. [104] 卢芙萍, 耿涛, 武华周, 等. 水稻-鲜食玉米轮作模式下草地贪夜蛾发生监测与防治技术[J]. 热带农业科学, 2022, 42(3): 68-72. [105] Liao H M, Zhou Z F, Liu Y B J, et al. ‘The three sisters’ (maize/bean/squash) polyculture promotes the direct and indirect defences of maize against herbivores[J]. European Journal of Agronomy, 2024, 155: 127118. [106] 吴道慧, 李宜儒, 王思勤, 等. 玉米及玉米田3种杂草对草地贪夜蛾生长发育和产卵的影响[J]. 植物保护, 2021, 47(2): 116-121, 134. [107] Kumar H, Mihm J A. Fall armyworm(Lepidoptera: Noctuidae), southwestern corn borer(Lepidoptera: Pyralidae) and sugarcane borer (Lepidoptera: Pyralidae) damage and grain yield of four maize hybrids in relation to four tillage systems[J]. Crop Protection, 2002, 21(2): 121-128. [108] 张磊, 柳贝, 姜玉英, 等. 中国不同地区草地贪夜蛾种群生物型分子特征分析[J]. 植物保护, 2019, 45(4): 20-27. [109] Zhang L, Liu B, Zheng W G, et al. Genetic structure and insecticide resistance characteristics of fall armyworm populations invading China[J]. Molecular Ecology Resources, 2020, 20(6): 1682-1696. [110] Pechan T, Jiang B, Steckler D, et al. Characterization of three distinct cDNA clones encoding cysteine proteinases from maize (Zea mays L.) callus[J]. Plant Molecular Biology, 1999, 40(1): 111-119. [111] Brooks T D, Shaun Bushman B S, Williams W P, et al. Genetic basis of resistance to fall armyworm (Lepidoptera: Noctuidae) and southwestern corn borer (Lepidoptera: Crambidae) leaf-feeding damage in maize[J]. Journal of Economic Entomology, 2007, 100(4): 1470-1475. [112] 黄欣蒸, 单双, 张丹丹, 等. 草地贪夜蛾取食诱导玉米叶片转录组分析[J]. 植物保护学报, 2020, 47(4): 780-788. [113] 苏梁轶楠, 胡春育, 陈美燕, 等. 不同草地贪夜蛾抗性的甘蔗品系叶片形态差异及相关基因表达分析[J]. 分子植物育种, https://kns.cnki.net/ kcms/detail/46.1068.S.20230506.1609.026.html. [114] 王全文. 玉米对草地贪夜蛾的抗性品种资源筛选及抗虫性研究[D]. 重庆: 西南大学, 2023. [115] 张楠, 陈婷, 李小凤, 等. 54份鲜食玉米品种草地贪夜蛾抗虫性鉴定与评价[J]. 广东农业科学, 2021, 48(12): 25-32. [116] Sekul A A, Sparks A N. Sex pheromone of the fall armyworm moth: isolation,identification, and synthesis[J]. Narnia, 1967, 60(5): 1270-1272. [117] Udayakumar A, Shivalingaswamy T M, Bakthavatsalam N. Legume-based intercropping for the management of fall armyworm, Spodoptera frugiperda L. in maize[J]. Journal of Plant Diseases and Protection, 2021, 128(3): 775-779. [118] Kenis M, Plessis H, Van B J, et al. Telenomus remus, a candidate parasitoid for the biological control of Spodoptera Frugiperda in africa, is already present on the continent[J]. Insects, 2019, 10(4): 92. [119] Liu Y J, Zhang D D, Yang L Y, et al. Analysis of phototactic responses in Spodoptera frugiperda using Helicoverpa armigera as control[J]. Journal of Integrative Agriculture, 2021, 20(3): 821-828. [120] Izabela N N, Gemerson M O, Mileny S S, et al. Light-emitting Diodes (LED) as luminous lure for adult Spodoptera frugiperda ( J. E. Smith,1797) (Lepidoptera: Noctuidae)[J]. Journal of Experimental Agriculture International,2018, 25(4), DOI: 10.9734/JEAI/2018/43402. [121] 刘思敏, 汪永乾, 汤金荣, 等. 不同波长光照对草地贪夜蛾成虫趋光行为及视蛋白表达量的影响[J]. 植物保护, 2023, 49(2): 176-183. [122] 师翱翔, 覃保荣, 宋一林, 等. 工厂自动化高效扩繁米蛾卵赤眼蜂关键技术创新及甘蔗螟虫生防技术产业化应用[EB/OL]. (2018-12-30) [2024-02-25].https://d.wanfangdata.com.cn/cstad/ChFDc3RhZE5ld1MyMDI0MDEwMxIKMTkwMDA0MDE2MhoIdWk1cDh6NTI%3D. [123] 曾曼. 螟黄赤眼蜂和夜蛾黑卵蜂寄生草地贪夜蛾卵的竞争关系研究[D]. 武汉: 长江大学, 2023. [124] 钟永志, 谢明惠, 林璐璐, 等. 草地贪夜蛾对氧化芳樟醇的趋性[J]. 植物保护, 2020, 46(4): 178-180. [125] 李冰. 草地贪夜蛾性信息素组分分析及应用技术研究[D]. 济南: 山东农业大学, 2021. |
[1] | WANG Endong, MING Meng, LIU Zhengling, XIE Yonghui, ZHANG Bo, XU Xuenong. Field Application of the Combination of Predatory Mites Neoseiulus barkeri and Stratiolaelaps scimitus as Well as Entomogenous Fungus Beauveria bassiana to Control of Western Flower Thrips Frankliniella occidentalis in the Tobacco Field [J]. Chinese Journal of Biological Control, 2024, 40(6): 1243-1249. |
[2] | ZHANG Cailing, WANG Zhimin, WANG Siyu, Ibrahim Osman, LI Kebin, ZHANG Shuai, CAO Yazhong, WANG Senshan, YIN Jiao. Virulence of Entomopathogenic Nematodes to Holotrichia parallela Larvae [J]. Chinese Journal of Biological Control, 2024, 40(5): 1009-1014. |
[3] | ZHENG Desong, ZHU Yulin, CHONG Hainan, LAI Qian, WANG Minjie, XIAO Haijun. Diversity and Population Dynamics of Predatory Natural Enemies in Paddy Field Ridges [J]. Chinese Journal of Biological Control, 2024, 40(5): 1000-1008. |
[4] | LIU Qin, HAN Guangjie, LI Chuanming, HUANG Lixin, LU Yurong, XIA Yang, ZHANG Nan, XU Jian. Control Effect of Entomopathogenic Nematode N-Yz1 to Rice Stem Borer, Chilo suppressalis [J]. Chinese Journal of Biological Control, 2024, 40(5): 1015-1021. |
[5] | ZHANG Jinhua, TIAN Chengli, SU Lanqi, SUN Hui, DING Yan, LI Maohai, LI Li. Metabolite of Symbiotic Bacteria from Steinernema feltiae SRP 18-91 and Their Antibacterial Activity [J]. Chinese Journal of Biological Control, 2024, 40(5): 1128-1134. |
[6] | ZOU Ping, CAO Liangming, SUN Shouhui, YANG Zhongqi, ZHANG Yanlong, WANG Xiaoyi. Research Progress on the Utilization of Natural Enemy Insects of Hyphantria cunea (Drury) [J]. Chinese Journal of Biological Control, 2024, 40(5): 1194-1206. |
[7] | QIAN Xiujuan, SUN Dan, ZANG Jiancheng, Edwin E. LEWIS. Effects of Insulin on Growth, Fecundity and Pathogenicity of Entomopathogenic Nematodes [J]. Chinese Journal of Biological Control, 2024, 40(4): 856-865. |
[8] |
ZHU Guodong, DING Wenjuan, QIU Jiyu, WANG Yan, XUE Ming, ZHAO Haipeng, ZHANG Guofu.
Pathogenicity and field control efficiency of Mucor hiemalis BO-1 against Bradysia odoriphaga Larvae [J]. Chinese Journal of Biological Control, 2024, 40(1): 52-60. |
[9] |
WANG Miaomiao, WANG Guangjun, NONG Xiangqun, CAI Ni, LIU Rong, SONG Hongyan, TU Xiongbing, ZHANG Zehua.
Effects of fluG Gene Knockout on Sporulation in Metarhizium anisopliae [J]. Chinese Journal of Biological Control, 2024, 40(1): 61-70. |
[10] |
WEI Shuhua, LIU Xueqin, WANG Ying, LIU Chang, ZHANG Rong.
Effects of Intercropping Alfalfa and Functional Plants on Population of Thrips and Their Natural Enemies Orius similis [J]. Chinese Journal of Biological Control, 2024, 40(1): 99-107. |
[11] |
CHEN Hong, LI Xitong, WANG Xingduo, QIAN Xiujuan.
Regulation of Longevity and Antioxidant Activity in Entomopathogenic Nematodes Steinernema kraussei by Chlorogenic Acid [J]. Chinese Journal of Biological Control, 2024, 40(1): 108-116. |
[12] | SUI Li, LU Yang, CHI Ruikai, ZHAO Yu, ZHANG Zhengkun, LI Qiyun. Effects and Colonization of Beauveria bassiana in Maize under Stress of Exserohilum turcicum Infection [J]. Chinese Journal of Biological Control, 2023, 39(4): 804-812. |
[13] | HU Jiangxin, LIU Yujun, HAN Yiren, WANG Ting, LI Jun, CHEN Mingjun. Species Diversity and Temporal Niche of Entomopathogenic Fungi in Camellia Oleifera Rhizosphere from Xianyu Mountains, Qimen [J]. Chinese Journal of Biological Control, 2023, 39(3): 533-541. |
[14] | ZHANG Xiaobo, ZHU Xiaofang, QIAN Xiujuan. Responses of Steinernema kraussei 0657L and Heterorhabditis brevicaudis 0641TY to Low Humidity Stress [J]. Chinese Journal of Biological Control, 2023, 39(2): 320-330. |
[15] | NONG Xiangqun, WANG Guangjun, WANG Yiyan, ZHANG LEI, GAO Qionghua, YU Yonghao. Potential and Prospect of Beauveria bassiana and Metarhizium anisopliae as Biological Pesticides for the Control of Red Fire Ants [J]. Chinese Journal of Biological Control, 2023, 39(2): 453-461. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||