[1] Shi Y M, Bode H B. Chemical language and warfare of bacterial natural products in bacteria-nematode-insect interactions[J]. Natural Product Reports, 2018, 35(4): 309-335. [2] Othman N S, Al-Hakeem A M, Al-Taae H H. Entomopathogenic nematodes: a review[J]. Texas Journal of Agriculture and Biological Sciences, 2022, 6: 49-54. [3] 常豆豆, 王从丽, 李春杰. 昆虫病原线虫致病机制研究进展[J]. 中国生物防治学报, 2022, 38(5): 1325-1333. [4] Kepenekci I, Atay T, Alkan M. Biological control potential of Turkish entomopathogenic nematodes against the Colorado potato beetle, Leptinotarsa decemlineata[J]. Biocontrol Science and Technology, 2016, 26(1): 141-144. [5] Boemare N. Biology, Taxonomy and systematics of Photorhabdus and Xenorhabdus[M]//Gaugler R ed. Entomopathogenic Nematology. Wallingford: CABI Publishing UK, 2002, 35-56. [6] 韩云飞, 他永全, 王勇, 等. 致病杆菌属细菌代谢物抑菌活性研究进展[J]. 农药学学报, 2022, 24(2): 217-231. [7] Herber E E, Goodrich-Blair. Friend and foe: the two faces of Xenorhabdus bovineii[J]. Nature Reviews Microbiology, 2007, 5: 634-646. [8] 李广悦, 杨秀芬. 嗜线虫致病杆菌抗菌代谢产物Xcn1的研究进展[J]. 中国生物防治学报, 2020, 36(1): 1-8. [9] Stock S P, Kusakabe A, Orozco R A. Secondary metabolites produced by Heterorhabditis symbionts and their application in agriculture: What we know and What to do next[J]. Journal of Nematology, 2017, 49(4): 373-383. [10] 张刚应, 张善稿, 简恒, 等. 杨怀文先生在昆虫病原线虫研究与利用中的贡献——追忆杨怀文先生[J]. 中国生物防治学报, 2022, 38(6): 1369-1373. [11] 陈澄, 侯新强, 詹发强, 等. 三种昆虫病原线虫非生物胁迫耐受特性及其共生菌抑菌作用[J]. 新疆农业科学, 2023, 60(12): 3072-3079. [12] Muangpat P, Yooyangket T, Fukruksa C, et al. Screening of the antimicrobial activity against drug resistant bacteria of Photorhabdus and Xenorhabdus associated with entomopathogenic nematodes from mae wong national park, Thailand[J]. Frontiers in Microbiology, 2017, 8: 1142. [13] 张潘杰, 窦振国, 王浩, 等. 9株昆虫病原线虫共生菌菌株的分离、鉴定及其抗菌谱的筛选[J]. 南京农业大学学报, 2021, 44(3): 487-496. [14] 卢星忠. 昆虫病原线虫共生菌SN19次生代谢产物的分离鉴定与抑菌活性研究[D]. 沈阳: 沈阳农业大学, 2016. [15] 蒙耀, 吴慧芳, 魏琳, 等.暹罗芽胞杆菌JZ1-4-10对马铃薯干腐病的抑菌作用及机理[J]. 中国生物防治学报, 2024, 40(3): 641-651. [16] 张金花, 任金平, 高月波, 等. 大豆孢囊线虫鉴定技术规程[S]. 中华人民共和国农业行业标准NY/T 3059-2016, 2017, 5. [17] 陈嘉敏, 管维轩, 朱洁倩, 等. 植物病害生防菌株的研究进展[J]. 微生物前沿, 2017, 6(2): 35-43 [18] 王欢, 丛斌, 刘彦群, 等. 昆虫病原线虫共生菌对甜菜夜蛾和辣椒炭疽病菌的生物活性测定[J]. 中国蔬菜, 2009(12): 33-36. [19] Isaacson P J, Webster J M. Antimicrobial activity of Xenorhabdus sp. RIO (Enterobacteriaceae), symbiont of the entomopathogenic nematode, Steinernema riobrave (Rhabditida: Steinernematidae)[J]. Journal of Invertebrate Pathology, 2002, 79(3): 146-153. [20] 马丽丽, 许艳丽, 台莲梅. 昆虫病原线虫共生细菌对植物病原菌的抑制作用[J]. 植物保护, 2007, 33(4): 7-11. [21] Saadeh H A, Sweidan K A, Mubarak M S. Recent advances in the synthesis and biological activity of 8-hydroxyquinolines[J]. Molecules, 2020, 25(18): 4321. [22] Chacón-Orozco J G, Bueno C J, Shapiro-Ilan D I, et al. Antifungal activity of Xenorhabdus spp. and Photorhabdus spp. against the soybean pathogenic Sclerotinia sclerotiorum[J]. Scientific Reports, 2020, 10: 20649. [23] Abd-Elgawad M M M. Xenorhabdus spp.: an overview of the useful facets of mutualistic bacteria of entomopathogenic nematodes[J]. Life (Basel), 2022, 12(9): 1360.. [24] Ji D J, Yi Y K, Kang G H, et al. Identification of an antibacterial compound, benzylideneacetone, from Xenorhabdus nematophila against major plant-pathogenic bacteria[J]. FEMS Microbiology Letters, 2004, 239(2): 241-248. |