[1] Peters R S, Krogmann L, Mayer C, et al. Evolutionary history of the Hymenoptera[J]. Current Biology, 2017, 27(7):1013-1018. [2] Branstetter M G, Childers A K, Cox-Foster D, et al. Genomes of the Hymenoptera[J]. Current Opinion in Insect Science, 2018, 25:65-75. [3] Werren J H, Richards S, Desjardins C A, et al. Functional and evolutionary insights from the genomes of three parasitoid Nasonia species[J]. Science, 2010, 327(5963):343-348. [4] Burke G R, Walden K K, Whitfield J B, et al. Widespread genome reorganization of an obligate virus mutualist[J]. PLoS Genetics, 2014, 10(9):e1004660. [5] Geib S M, Liang G H, Murphy T D, et al. Whole genome sequencing of the braconid parasitoid wasp Fopius arisanus, an important biocontrol agent of pest tepritid fruit flies[J]. G3(Bethesda), 2017, 7(8):2407-2411. [6] Yin C, Li M, Hu J, et al. The genomic features of parasitism, polyembryony and immune evasion in the endoparasitic wasp Macrocentrus cingulum[J]. BMC Genomics, 2018, 19(1):420. [7] Lindsey A R I, Kelkar Y D, Wu X, et al. Comparative genomics of the miniature wasp and pest control agent Trichogramma pretiosum[J]. BMC Biology, 2018, 16(1):54. [8] Xiao J H, Yue Z, Jia L Y, et al. Obligate mutualism within a host drives the extreme specialization of a fig wasp genome[J]. Genome Biology, 2013, 14(12):R141. [9] Feyereisen R. Insect CYP genes and P450 enzymes[M]//Insect Molecular Biology and Biochemistry. Academic Press, 2012, 236-316. [10] 艾均文, 孟繁利, 贾孟周, 等. 昆虫细胞色素P450的研究进展[C]. 中国蚕学会第六届青年学术研讨会论文集, 2009, 10. [11] 杨帆, 王进军. 昆虫细胞色素P450与抗药性关系研究进展[J]. 四川动物, 2008(3):460-463. [12] 刘金定, 李飞. 丽蝇蛹集金小蜂P450基因家族的发现和分子进化分析[J]. 中国生物防治学报, 2013, 29(4):490-496. [13] El-Gebali S, Mistry J, Bateman A, et al. The Pfam protein families database in 2019[J]. Nucleic Acids Research, 2018, 47(D1):D427-D432. [14] Sayers E W, Agarwala R, Bolton E E, et al. Database resources of the National Center for Biotechnology Information[J]. Nucleic Acids Research, 2019, 47(D1):D23-D28. [15] Yin C, Shen G, Guo D, et al. InsectBase:a resource for insect genomes and transcriptomes[J]. Nucleic Acids Research, 2016, 44(D1):D801-807. [16] Birney E, Clamp M, Durbin R. GeneWise and genomewise[J]. Genome Research, 2004, 14(5):988-995. [17] Katoh K, Misawa K, Kuma K, et al. MAFFT:a novel method for rapid multiple sequence alignment based on fast Fourier transform[J]. Nucleic Acids Research, 2002, 30(14):3059-3066. [18] Capella-Gutierrez S, Silla-Martinez J M, Gabaldon T. trimAl:a tool for automated alignment trimming in large-scale phylogenetic analyses[J]. Bioinformatics, 2009, 25(15):1972-1973. [19] Nguyen L T, Schmidt H A, von Haeseler A, et al. IQ-TREE:a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies[J]. Molecular Biology and Evolution, 2015, 32(1):268-274. [20] Kalyaanamoorthy S, Minh B Q, Wong T K F, et al. ModelFinder:fast model selection for accurate phylogenetic estimates[J]. Nature Methods, 2017, 14(6):587-589. [21] Stamatakis A. RAxML version 8:a tool for phylogenetic analysis and post-analysis of large phylogenies[J]. Bioinformatics, 2014, 30(9):1312-1313. [22] Wang F, Fang Q, Wang B, et al. A novel negative-stranded RNA virus mediates sex ratio in its parasitoid host[J]. PLOS Pathogens, 2017, 13(3):e1006201. [23] Yan Z, Fang Q, Liu Y, et al. A venom serpin splicing isoform of the endoparasitoid wasp Pteromalus puparum suppresses host prophenoloxidase cascade by forming complexes with host hemolymph proteinases[J]. Journal of Biological Chemistry, 2017, 292(3):1038-1051. [24] Teng Z W, Xu G, Gan S Y, et al. Effects of the endoparasitoid Cotesia chilonis (Hymenoptera:Braconidae) parasitism, venom, and calyx fluid on cellular and humoral immunity of its host Chilo suppressalis (Lepidoptera:Crambidae) larvae[J]. Journal of Insect Physiology, 2016, 85(1):46-56. [25] Wang Z Z, Ye X Q, Shi M, et al. Parasitic insect-derived miRNAs modulate host development[J]. Nature Communications, 2018, 9(1):2205. [26] Tan C W, Peiffer M, Hoover K, et al. Symbiotic polydnavirus of a parasite manipulates caterpillar and plant immunity[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(20):5199-5204. [27] Zhu F, Cusumano A, Bloem J, et al. Symbiotic polydnavirus and venom reveal parasitoid to its hyperparasitoids[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(20):5205-5210. [28] Kubota A, Stegeman J J, Goldstone J V, et al. Cytochrome P450 CYP2 genes in the common cormorant:Evolutionary relationships with 130 diapsid CYP2 clan sequences and chemical effects on their expression[J]. Comparative Biochemistry and Physiology Part C:Toxicology and Pharmacology, 2011, 153(3):280-289. [29] Zhu F, Moural T W, Shah K, et al. Integrated analysis of cytochrome P450 gene superfamily in the red flour beetle, Tribolium castaneum[J]. BMC Genomics, 2013, 14(1):174. [30] 王小青, 刘婷. 昆虫CYP4基因家族多样性和进化[J]. 山西农业科学, 2012, 40(5):559-562. [31] Feyereisen R. Evolution of insect P450[J]. Biochemical Society Transactions, 2006, 34(6):1252-1255. [32] Bassett M H, McCarthy J L, Waterman M R, et al. Sequence and developmental expression of Cyp18, a member of a new cytochrome P450 family from Drosophila[J]. Molecular and Cellular Endocrinology, 1997, 131(1):39-49. [33] 艾均文, 王根洪, 李艳红, 等. 家蚕P450基因CYP18A1的克隆、序列分析及转录活性[J]. 昆虫学报, 2008, 51(3):237-245. [34] Rewitz K F, O'Connor M B, Gilbert L I. Molecular evolution of the insect Halloween family of cytochrome P450s:phylogeny, gene organization and functional conservation[J]. Insect Biochemistry and Molecular Biology, 2007, 37(8):741-753. [35] Daimon T, Shinoda T. Function, diversity, and application of insect juvenile hormone epoxidases (CYP15)[J]. Biotechnology and Applied Biochemistry, 2013, 60(1):82-91. [36] Minakuchi C, Ishii F, Washidu Y, et al. Expressional and functional analysis of CYP15A1, a juvenile hormone epoxidase, in the red flour beetle Tribolium castaneum[J]. Journal of Insect Physiology, 2015, 80(1):61-70. [37] Hudson S A, Mashalidis E H, Bender A, et al. Biofragments:an approach towards predicting protein function using biologically related fragments and its application to Mycobacterium tuberculosis CYP126[J]. ChemBioChem, 2014, 15(4):549-555. |