[1] Schmittgen T D. Real-time quantitative PCR[J]. Methods, 2001, 25(4):383-385. [2] Hein I, Lehner A, Rieck P, et al. Comparison of different approaches to quantify Staphylococcus aureuscells by real-time quantitative PCR and application of this technique for examination of cheese[J]. Applied and Environmental Microbiology, 2001, 67(7):3122-3126. [3] Rajeevan M S, Ranamukhaarachchi D G, Vernon S D, et al. Use of real-time quantitative PCR to validate the results of cDNA array and differential display PCR technologies[J]. Methods, 2001, 25(4):443-451. [4] An X K, Hou M L, Liu Y D. Reference gene selection and evaluation for gene expression studies using qRT-PCR in the white-backed planthopper, sogatella furcifera (hemiptera:delphacidae)[J]. Journal of Economic Entomology, 2016, 109(2):879-886. [5] Hu Y, Deng T, Chen L, et al. Selection and validation of reference genes for qRT-PCR in Cycas elongata[J]. PLoS ONE, 2016, 11(4):e0154384. [6] Pollier J, Vanden B R, Rischer H, et al. Selection and validation of reference genes for transcript normalization in gene expression studies in Catharanthus roseus[J]. Plant Physiology and Biochemistry, 2014, 83:20-25. [7] Shakeel M, Rodriguez A, Tahir U B, et al. Gene expression studies of reference genes for quantitative real-time PCR:an overview in insects[J]. Biotechnology Letters, 2018, 40(2):227-236. [8] 赵文静, 徐洁, 包秋华, 等. 实时荧光定量PCR中内参基因的选择[J]. 微生物学通报, 2010, 37(12):1825-1829. [9] Radonić A, Thulke S, Mackay I M, et al. Guideline to reference gene selection for quantitative real-time PCR[J]. Biochemical & Biophysical Research Communications, 2004, 313(4):856-862. [10] Kozera B, Rapacz M. Reference genes in real-time PCR[J]. Journal of Applied Genetics, 2013, 54(4):391-406. [11] Nieto P A, Covarrubias P C, Jedlicki E, et al. Selection and evaluation of reference genes for improved interrogation of microbial transcriptomes:Case study with the extremophile Acidithiobacillus ferrooxidans[J]. BMC Molecular Biology, 2009, 10(1):63. [12] Xu L, Ma X, Cui B, et al. Selection of reference genes for qRT-PCR in high fat diet-induced hepatic steatosis mice model[J]. Molecular Biotechnology, 48(3):255-262. [13] Andras D, Szilard B, Arpad G, et al. Quantitative evaluation and selection of reference genes in mouse oocytes and embryos cultured in vivo and in vitro[J]. BMC Developmental Biology, 2007, 7(1):1-12. [14] Liu R, Deng Z, Liu T. Streptomyces species:Ideal chassis for natural product discovery and overproduction[J]. Metabolic Engineering, 2018, 50:74-84. [15] Manteca Á, Yagüe P. Streptomyces differentiation in liquid cultures as a trigger of secondary metabolism[J]. Antibiotics, 2018, 7(2):41. [16] Cui H, Ni X, Liu S, et al. Characterization of three positive regulators for tetramycin biosynthesis in Streptomyces ahygroscopicus[J]. FEMS Microbiology Letters, 2016, 363(12):fnw109. [17] Yan L, Zhang Q, Virolle M J, et al. In conditions of over-expression, WblI, a WhiB-like transcriptional regulator, has a positive impact on the weak antibiotic production of Streptomyces lividans TK24[J]. PLoS ONE, 2017,12(3):e0174781. [18] 汤谷, 姚佳忆, 申屠旭萍, 等. 几个常用内参基因在淀粉酶产色链霉菌1628抗药性突变株中稳定性的评估[J]. 中国生物防治学报, 2016, 32(4):518-523. [19] Li S, Wang W, Li X, et al. Genome-wide identification and characterization of reference genes with different transcript abundances for Streptomyces coelicolor[J]. Scientific Reports, 2015, 5(1):15840. [20] Rocha D J P, Santos C S, Pacheco L G C. Bacterial reference genes for gene expression studies by RT-qPCR:survey and analysis[J]. Antonie van Leeuwenhoek, 2015, 108(3):685-693. [21] Lu D, Ma Z, Xu X, et al. Isolation and identification of biocontrol agent Streptomyces rimosus M527 against Fusarium oxysporum f. sp. cucumerinum[J]. Journal of Basic Microbiology, 2016, 56(8):929-933. [22] Zhao Y F, Song Z Q, Ma Z, et al. Sequential improvement of rimocidin production in Streptomyces rimosus M527 by introduction of cumulative drug-resistance mutations[J]. Journal of Industrial Microbiology & Biotechnology, 2019, 46(5):697-708. [23] Jian Y W U, Bing H E, Yu J D U, et al. Analysis method of systematically evaluating stability of reference genes using geNorm, NormFinder and BestKeeper[J]. Modern Agricultural Science & Technology, 2017, 5:278-281. [24] Vandesompele J, De Preter K, Pattyn F, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes[J]. Genome Biology, 2002, 3(7):research0034. [25] Andersen C L, Jensen J L, Ørntoft T F. Normalization of real-time quantitative reverse transcription-PCR data:a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets[J]. Cancer Research, 2004, 64(15):5245-5250. [26] Pfaffl M W, Tichopad A, Prgomet C, et al. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity:BestKeeper-Excel-based tool using pair-wise correlations[J]. Biotechnology Letters, 2004, 26(6):509-515. [27] Livak K, Schmittgen T. Analysis of relative gene expression data using Real-Time quantitative PCR and the 2-△△Ct method[J]. Methods, 2000, 25(4):402-408. [28] Brahamsha B, Haselkorn R. Identification of multiple RNA polymerase sigma factor homologs in the cyanobacterium Anabaena sp. strain PCC 7120:cloning, expression, and inactivation of the sigB and sigC genes[J]. Journal of Bacteriology, 1992, 174(22):7273-7282. [29] Cho Y H, Lee E J, Ahn B E, et al. SigB, an RNA polymerase sigma factor required for osmoprotection and proper differentiation of Streptomyces coelicolor[J]. Molecular Microbiology, 2001, 42(1):205-214. |