[1] White A. Descriptions of a new genus and some new species of Homopterous insects from the East in the collection of British Museum[J]. Annals and Magazine of Natural History, 1845, 96(15): 34-37. [2] 周尧, 路进生, 黄桔, 等. 中国经济昆虫志-蜡蝉总科[C]. 北京, 科学出版社, 1985, 3, 5, 7, 112. [3] Atkinson E T. Notes on Indian rhynchota[J]. Journal of the Asiatic Society of Bengal, 1885, 3: 150. [4] Tomisawa A, Ohmiya S, Fukutomi H, et al. Biological notes on Lycorma delicatula (White) (Hemiptera, Fulgoridae) in Ishikawa Prefecture, Japan[J]. Japanese Journal of Entomology, 2013, 16(1): 3-14. [5] EPPO (European and Mediterranean Plant Protection Organization). Pest risk analysis for Lycorma delicatula. 2017, Available at https://pra. eppo.int/pra/4a1f801f-8a4b-415c-abe4-52f54eb8ef33. [6] Han J M, Kim H, Lim E J, et al. Lycorma delicatula (Hemiptera: Auchenorrhyncha: Fulgoridae: Aphaeninae) finally, but suddenly arrived in Korea[J]. Entomological Research, 2008, 38(4): 281-286. [7] Pennsylvania Department of Agriculture. New invasive pest, spotted lanterfly, found in Berks County, Pennsylvania. 2014, http://fruitgrowersnews. com/news/new-invasive-pest-found-in-pennsylvania/ [8] Barringer L E, Donovall L R, Spichiger S E, et al. The first new world record of Lycorma delicatula (Insecta: Hemiptera: Fulgoridae)[J]. Entomological News, 2015, 125(1): 20-23. [9] Sisti P, Pfeiffer D, Day E. Spotted lanternfly Lycorma delicatula (White) (Hemiptera: Fulgoridae). 2016. Virginia Polytechnic Institute and State University. http://pubs.ext.vt.edu/content/dam/pubs_ext_vt_edu/ENTO/ENTO-180/ENTO-180-PDF.pdf. [10] Lee D H, Park Y L, Leskey T C. A review of biology and management of Lycorma delicatula (Hemiptera: Fulgoridae), an emerging global invasive species[J]. Journal of Asia-Pacific Entomology, 2019, 22(2): 589-596. [11] Kim H, Kim M, Kwon D H, et al. Molecular comparison of Lycorma delicatula (Hemiptera: Fulgoridae) isolates in Korea, China, and Japan[J]. Journal of Asia-Pacific Entomology, 2013, 16(4): 503-506. [12] 刘玉升, 陈艳霞, 吕飞, 等. 斑衣蜡蝉成虫肠道细菌的鉴定研究[J]. 山东农业大学学报(自然科学版), 2006, 37(4): 495-498. [13] 侯峥嵘. 斑衣蜡蝉及其卵寄生蜂研究[D]. 北京: 中国林业科学研究院, 2013. [14] Shin Y H, Moon S R, Yoon C M, et al. Insecticidal activity of 26 insectcides against eggs and nymphs of Lycorma delicatula (Hemiptera: Fulgoridae)[J]. The Korean Journal of Pesticide Science, 2010, 14(2): 157-163. [15] Lee K Y, Kim S K, Kim I H, et al. Seasonal occurrence of spot clothing wax cicada, Lycorma delicatula (Hemiptera: Fulgoridae) and it’s control efficacy using EFAM at the vineyards[J]. Korean Journal of Pesticide Science, 2011, 15(3): 303-309. [16] Lee J S, Kim I K, Koh S H, et al. Impact of minimum winter temperature on Lycorma delicatula (Hemiptera: Fulgoridae) egg mortality[J]. Journal of Asia-Pacific Entomology, 2011, 14(1): 123-125. [17] Park J D, Kim M Y, Lee S G, et al. Biological characteristics of Lycorma delicatula and the control effects of some insecticides[J]. Korean Journal of Applied Entomology, 2009, 48(1): 53-57. [18] Choi D S, Kim D I, Ko S J, et al. Environmentally-friendly control methods and forecasting the hatching time Lycorma delicatula (Hemiptera: Fulgoridae) in Jeonnam province[J]. Korean Journal of Applied Entomology, 2012, 51(4): 371-376. [19] Yang Z Q, Choi W Y, Cao L M. A new species of Anastatus (Hymenoptera: Eulpelmidae) from China, parasitizing eggs of Lycorma delicatula (Homoptera: Fulgoridae)[J]. Zoological Systematics, 2015, 40(3): 290-302. [20] 暴可心, 党英侨, 王小艺, 等. 不同栖境条件下斑衣蜡蝉自然种群的影响因子[J]. 应用生态学报, 2022, 33(1): 248-254. [21] Kim H. Morphometric analysis of wing variation of lantern fly, Lycorma delicatula from northeast Asia[J]. Korean Journal of Applied Entomology, 2013, 52(4): 265-271. [22] Seo M, Kim J H, Seo B Y, et al. Mass-rearing techniques of Anastatus orientalis (Hymenoptera: eupelmidae), as the egg-parasitoid of Lycorma delicatula (Hemiptera: fulgoridae): an using method of Antheraea pernyi (Lepidoptera: saturniidae) and L. delicatula eggs in laboratory[J]. Korean Journal of Applied Entomology, 2018, 57(4): 243-251. [23] Waage J K, Carl K P, Mills N J, et al. Rearing entomophagous insects[J]. Elsevier Amsterdam, 1985, 169(1): 45-66. [24] Hassell M P, Varley G. New inductive population model for insect parasites and its bearing on biological control[J]. Nature, 1969, 223(13): 1133-1137. [25] Visser M E, Jones T H, Driessen G. Interference among insect parasitoids: a multi-patch experiment[J]. Journal of Animal Ecology, 1999. 68: 108-120. [26] Merkel K. Patch exploitation behaviour of the tephritid parasitoid Fopius arisanus, a candidate for the biological control of mango flies[D]. Bremen, Germany: Dissertation University, 2014. [27] Hassell M P. The dynamics of arthropod predator-prey systems[M]. Princeton: Princeton University Press, 1978, 223-237. [28] Skovgard H, Nachman G. Effect of mutual interference on the ability of Spalangia cameroni (Hymenoptera: Pteromalidae) to attack and parasitize pupae of Stomoxys calcitrans (Diptera: Muscidae)[J]. Environmental Entomology, 2015, 44(4): 1076-1084. [29] Solomon M E. The natural control f animal populations[J]. Journal of Animal Ecology, 1949, 18: 1-35. [30] Lester P J, Harmsen R. Functional and numerical responses do not always indicate the most effective predator for biological control: An analysis of two predator in a two-prey system[J]. Journal of Applied Ecology, 2002, 39(3): 455-468. [31] Pritchard D W, Paterson R A, Bovy H C, et al. Frair: an R package for fitting and comparing consumer functional responses[J]. Methods in Ecology and Evolution, 2017, 8: 1528-153. [32] Holling C S. The components of predation as revealed by a study of small mammal predation of the European pine sawfly[J]. Canadian Entomologist, 1959, 91(5): 293-320. [33] Juliano, S A. Nonlinear curve fitting: Predation and functional response curves. In Design and Analysis of ecological experiments[D]. New York: Oxford University Press, 2001. [34] Loko Y, Djagoun A, Dannon E, et al. Functional response of the predators Alloeocranum biannulipes (Hemiptera: Reduviidae) and Teretrius nigrescens (Coleoptera: Histeridae) feeding on Dinoderus porcellus (Coleoptera: Bostrichidae) infesting yam chips[J]. Environmental Entomology, 2017, 46(1): 84-91. [35] 王小艺, 杨忠岐, 唐艳龙, 等. 白蜡吉丁肿腿蜂对栗山天牛低龄幼虫的寄生作用[J]. 昆虫学报, 2010, 53(6): 675-682. [36] 陈万斌, 王勤英, 何康来, 等. 不同赤眼蜂品系对桃蛀螟卵的寄生功能反应和干扰效应[J]. 中国生物防治学报, 2020, 36(3): 319-326. [37] Holling C S. Some characteristics of simple types of predation and parasitism[J]. Canadian Entomologist, 1959, 91(5): 385-398. [38] 丁岩钦. 天敌-害虫作用系统中的数学模型及其主要参数的估计: 捕食者-猎物系统中主要参数的估计[J]. 昆虫知识, 1983(6): 284-287. [39] Watt K E. A mathematical model for the effect of densities of attacked and attacking species on the number of attacked[J]. Canadian Entomologist, 1959, 91: 129-144. [40] Fathipour Y, Hosseini A, Talebi A A, et al. Functional response and mutual interference of Diaeretiella rapae (Hymenoptera: Aphidiidae) on Brevicoryne brassicae (Homoptera: Aphididae)[J]. Entomologica Fennica, 2006, 17(2): 90-97. [41] Sonia P, Pablo M, Jorge C, et al. Determining the functional response and mutual interference of Utetes anastrephae (Hymenoptera: Braconidae) on Anastrepha obliqua (Diptera: Tephritidae) larvae for mass rearing purposes[J]. Annals of the Entomological Society of America, 2016, 109(4): 518-525. [42] 黄俊, 吕要斌, 张娟, 等. 短翅蚜小蜂对桃蚜的取食和寄生功能反应[J]. 昆虫学报, 2012, 55(12): 1418-1423. [43] 刘爱萍, 黄海广, 徐林波, 等. 茶足柄瘤蚜茧蜂对苜蓿蚜的寄生功能反应[J]. 环境昆虫学报, 2012, 34(1): 69-74. [44] 赵景玮, 许建飞. 荔枝蝽卵平腹小峰对寄主卵的功能反应研究-对经典Holling功能反应原理的改良[J]. 福建农业大学学报, 1995, 24(1): 23-27. [45] 谢丽娜, 董辉, 钱海涛, 等. 不同温度下松毛虫赤眼蜂孤雌产雌品系和两性生殖品系对米蛾卵的寄生功能反应[J]. 昆虫学报, 2013, 56(3): 263-269. [46] 王建梅, 刘长仲, 刘爱萍, 等. 伞裙追寄蝇对黏虫幼虫的寄生功能反应[J]. 植物保护, 2015, 41(1): 45-48. [47] 吴晓霜, 牛黎明, 符悦冠, 等. 日本食蚧蚜小蜂对橡副珠蜡蚧的控制作用研究[J]. 应用昆虫学报, 2019, 56(2): 208-213. [48] Wang S B, Han M J, Wei K, et al. The Temperature dependent functional response and mutual interference of Cyanopterus ninghais (Hymenoptera: Braconidae) Parasitizing Monochamus alternatus (Coleoptera: Cerambycidae)[J]. Forests, 2023, 14: 2024. [49] 李文敬, 陈菊红, 米倩倩, 等. 日本平腹小蜂对点蜂缘蝽的控害潜能研究[J]. 中国植保导刊, 2021, 41(7): 26-31. [50] 胡浩, 孟玲, 李保平. 斑痣悬茧蜂对不同龄期斜纹夜蛾幼虫的寄生功能反应[J]. 中国生物防治学报, 2015, 31(2): 176-180. [51] 王圣印, 牛雨佳, 唐睿, 等. 短翅蚜小蜂对桃蚜的取食和寄生功能反应[J]. 植物保护学报, 2016, 43(2): 267-274. [52] Saini A, Sharma P L. Functional response and mutual interference of Cotesia vestalis (Hymenoptera: Braconidae) on Plutella xylostella (Lepidoptera: Plutellidae)[J]. Journal of Entomological Science, 2018, 53(2): 162-170. [53] Broadley H J, Sipolski S J, Pitt D B, et al. Assessing the host range of Anastatus orientalis, an egg parasitoid of spotted lanternfly (Lycorma delicatula) using Eastern U.S. non-target species[J]. Frontiers in Insect Science, 2023, 3: 1154697. [54] Francesc G M, Douglas Y, Marta R, et al. Proactive classical biological control of Lycorma delicatula (Hemiptera: Fulgoridae) in California (U.S.): Host range testing of Anastatus orientalis (Hymenoptera: Eupelmidae)[J]. Frontiers in Insect Science, 2023, 3: 1134889. |