[1] Guo S, Zhang J, Sun H, et al. The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions[J]. Nature Genetics, 2018, 45(1): 51-58. [2] 刘文革, 何楠, 赵胜杰, 等. 我国西瓜品种选育研究进展[J]. 中国瓜菜, 2016, 29(1): 1-7. [3] Zhang Z, Zhang J, Wang Y, et al. Molecular detection of Fusarium oxysporum f. sp. niveum and Mycosphaerella melonis in infected plant tissues and soil[J]. FEMS Microbiology Letters, 2005, 249(1): 39-47. [4] Martyn R D. Fusarium wilt of watermelon: 120 years of research[J]. Horticultural Reviews, 2014, 42: 349-442. [5] Pietro A D, Madrid M P, Caracuel Z, et al. Fusarium oxysporum: exploring the molecular arsenal of a vascular wilt fungus[J]. Molecular Plant Pathology, 2016, 4(5): 315-25. [6] Karki K, Grant J, da Silva A L B R, et al. Evaluation of pic-clor 60 choloropicrin pre-mixed with 1, 3 dicholoropropene and soil-applied fungicides for the Fusarium wilt management in watermelon[J]. Crop Protection, 2022, 154: 105894. [7] Liu L L, Zhou K S, Huang X Q, et al. Effects of reductive soil disinfestation during low-temperature stubble free period on the control of watermelon Fusarium wilt[J]. The Journal of Applied Ecology, 2021, 32(8): 2967-2974. [8] Jagre A, Singh D, Chaurasiya A, et al. Screening of various chickpea varieties against Fusarium oxysporum f. sp. ciceri under field conditions[J]. International Journal of Plant & Soil Science, 2022, 34(21): 612-618. [9] Norton J D, Boyhan G E, Smith D A, et al. 'AU-Sweet Scarlet' watermelon[J]. Hortscience, 2021, 30(2): 393-394. [10] Jiang C H, Yao X F, Mi D D, et al. Comparative transcriptome analysis reveals the biocontrol mechanism of Bacillus velezensis F21 against Fusarium wilt on watermelon[J]. Frontiers in Microbiology, 2019, 10: 652. [11] Zhang Y, Xiao J, Yang K, et al. Transcriptomic and metabonomic insights into the biocontrol mechanism of Trichoderma asperellum M45a against watermelon Fusarium wilt[J]. PLoS ONE, 2022, 17(8): e0272702. [12] Samuels Gary J. Trichoderma: systematics, the sexual state, and ecology[J]. Phytopathology, 2006, 96(2): 195-206. [13] Cummings N J, Ambrose A, Braithwaite M, et al. Diversity of root-endophytic Trichoderma from Malaysian Borneo[J]. Mycological Progress, 2016, 15: 1-14. [14] Huang X, Chen L, Ran W, et al. Trichoderma harzianum strain SQR-T37 and its bio-organic fertilizer could control Rhizoctonia solani damping-off disease in cucumber seedlings mainly by the mycoparasitism[J]. Applied Microbiology and Biotechnology, 2011, 91: 741-755. [15] Poveda J. Trichoderma as biocontrol agent against pests: New uses for a mycoparasite[J]. Biological Control, 2021, 159: 104634. [16] Harman G E. Trichoderma—not just for biocontrol anymore[J]. Phytoparasitica, 2011, 39: 103-108. [17] Lopes F A C, Steindorff A S, Geraldine A M, et al. Biochemical and metabolic profiles of Trichoderma strains isolated from common bean crops in the Brazilian Cerrado, and potential antagonism against Sclerotinia sclerotiorum[J]. Fungal Biology, 2012, 116(7): 815-824. [18] 孟素玲, 王媛, 顾欣, 等. 西瓜枯萎病菌和哈茨木霉的GFP标记及根部动态定殖比较[J]. 西北农业学报, 2024, 33(2): 355-363. [19] Ali H Z, Aboud H M, Dheyab N S, et al. Effects of pH and ECW on growth and sporulation of indigenous Tricoderma spp.[J]. International Journal of Phytopathology, 2015, 4(1): 15-20. [20] Dobbs C G, Hinson W H. A widespread fungistasis in soils[J]. Nature, 1953, 172: 197-199. [21]吴连举, 杨依军, 武侠, 等. 利用土壤拮抗性微生物防治人参锈腐病[J]. 中国生物防治, 1999, 15(4): 166-168. [22] Sanjay R, Ponmurugan P, Baby U I. Evaluation of fungicides and biocontrol agents against grey blight disease of tea in the field[J]. Crop Protection, 2008, 27(3-5): 689-694. [23] Liu H, Duan W, Liu C, et al. Spore production in the solid-state fermentation of stevia residue by Trichoderma guizhouense and its effects on corn growth[J]. Journal of Integrative Agriculture, 2021, 20(5): 1147-1156. [24] Blok C, Diaz A, Oud N, et al. Biochar as a carrier: Trichoderma harzianum on biochar to promote disease suppression in strawberry[R]//Wageningen University & Research, BU Greenhouse Horticulture, 2019. [25] Bevacqua R F, Mellano V J. Cumulative effects of sludge compost on crop yields and soil properties[J]. Communications in Soil Science and Plant Analysis, 1994, 25(3-4): 395-406. [26] Stolze M, Piorr A, Häring A M, et al. Environmental Impacts of Organic Farming in Europe[M]. Universität Hohenheim, Stuttgart-Hohenheim, 2000. [27] El Hassan S A, Gowen S R. Formulatio ‐ n and delivery of the bacterial antagonist Bacillus subtilis for management of lentil vascular wilt caused by Fusarium oxysporum f. sp. lentis[J]. Journal of Phytopathology, 2006, 154(3): 148-155. [28] Zhao Q, Dong C, Yang X, et al. Biocontrol of Fusarium wilt disease for Cucumis melo melon using bio-organic fertilizer[J]. Applied Soil Ecology, 2011, 47(1): 67-75. [29] Gupta G K, Gupta P K, Mondal M K. Experimental process parameters optimization and in-depth product characterizations for teak sawdust pyrolysis[J]. Waste Management, 2019, 87: 499-511. [30] Li C, Ahmed W, Li D, et al. Biochar suppresses bacterial wilt disease of flue-cured tobacco by improving soil health and functional diversity of rhizosphere microorganisms[J]. Applied Soil Ecology, 2022, 171: 104314. [31] Jaiswal A K, Frenkel O, Tsechansky L, et al. Immobilization and deactivation of pathogenic enzymes and toxic metabolites by biochar: a possible mechanism involved in soilborne disease suppression[J]. Soil Biology and Biochemistry, 2018, 121: 59-66. [32] Debode J, De Tender C, Cremelie P, et al. Trichoderma-inoculated miscanthus straw can replace peat in strawberry cultivation, with beneficial effects on disease control[J]. Frontiers in Plant Science, 2018, 9: 213. [33] Palansooriya K N, Wong J T F, Hashimoto Y, et al. Response of microbial communities to biochar-amended soils: a critical review[J]. Biochar, 2019, 1: 3-22. [34] 李红宇, 张巩亮, 范名宇, 等. 生物炭连续还田对苏打盐碱水稻土养分及真菌群落结构的影响[J]. 水土保持学报, 2020, 34(6): 345-351, 360. [35] Jaiswal A K, Elad Y, Cytryn E, et al Activating biochar by manipulating the bacterial and fungal microbiome through pre conditioning[J]. New ‐ Phytologist, 2018, 219(1): 363-377. [36] Freddo A, Cai C, Reid B J. Environmental contextualisation of potential toxic elements and polycyclic aromatic hydrocarbons in biochar[J]. Environmental Pollution, 2012, 171: 18-24. [37] 孙小涵, 田彦梅, 顾欣, 等. 一株生防木霉的鉴定及环境pH与对羟基苯甲酸对其防病效果的影响[J]. 西北农业学报, 2023, 32(1): 145-153. [38] Komada H. Development of a selective medium for quantitative isolation of Fusarium oxysporum from natural soil[J]. Review of Plant Protection Research, 1975, 8: 114-125 [39] Elad Y, Chet I, Henis Y. A selective medium for improving quantitative isolation of Trichoderma spp. from soil[J]. Phytoparasitica, 1981, 9(1): 59-67. [40] Hoagland D R, Arnon D I. The Water-Culture Method for Growing Plants without Soil (2nd edit)[M]. Circular, Bulletin-California Agricultural Experiment Station, 1950, 347. [41] Huan X, Wang X, Zou S, et al. Transcription factor ERF194 modulates the stress-related physiology to enhance drought tolerance of poplar[J].International Journal of Molecular Sciences, 2023, 24(1): 788. [42] Zhou L, Huan X, Zhao K, et al. PagMYB205 negatively affects poplar salt tolerance through reactive oxygen species scavenging and root vitality modulation[J]. International Journal of Molecular Sciences, 2023, 24(20): 15437. [43] 何梦园, 沈聪, 张俊华, 等. 连作对枸杞根区土壤理化性质、农药残留和微生物群落的影响[J]. 环境科学, 2024, 45(9): 5578-5590. [44] Zehra A, Aamir M, Dubey M K, et al. Enhanced protection of tomato against Fusarium wilt through biopriming with Trichoderma harzianum[J]. Journal of King Saud University-Science, 2023, 35(2): 102466. [45] Rhodes A H, Carlin A, Semple K T. Impact of black carbon in the extraction and mineralization of phenanthrene in soil[J]. Environmental Science & Technology, 2008, 42(3): 740-745. [46] Topoliantz S, Ponge J F, Ballof S. Manioc peel and charcoal: a potential organic amendment for sustainable soil fertility in the tropics[J]. Biology and Fertility of Soils, 2005, 41: 15-21. [47] Jaiswal A K, Elad Y, Paudel I, et al. Linking the belowground microbial composition, diversity and activity to soilborne disease suppression and growth promotion of tomato amended with biochar[J]. Scientific Reports, 2017, 7(1): 44382. [48] Lyu H, He Y, Tang J, et al. Effect of pyrolysis temperature on potential toxicity of biochar if applied to the environment[J]. Environmental Pollution, 2016, 218: 1-7. [49] Rajkovich S, Enders A, Hanley K, et al. Corn growth and nitrogen nutrition after additions of biochar with varying properties to a temperate soil[J]. Biology and Fertility of Soils, 2012, 48: 271-284. [50] Copley T R, Aliferis K A, Jabaji S. Maple bark biochar affects Rhizoctonia solani metabolism and increases damping-off severity[J]. Phytopathology, 2015, 105(10): 1334-1346. [51] Dai Z, Xiong X, Zhu H, et al. Association of biochar properties with changes in soil bacterial, fungal and fauna communities and nutrient cycling processes[J]. Biochar, 2021, 3: 239-254. [52] Novak J M, Busscher W J, Laird D L, et al. Impact of biochar amendment on fertility of a southeastern coastal plain soil[J]. Soil Science, 2009, 174(2): 105-112. [53] Figueiredo C C, Chagas J K M, da Silva J, et al. Short-term effects of a sewage sludge biochar amendment on total and available heavy metal content of a tropical soil[J]. Geoderma, 2019, 344: 31-39. [54] Yao Q, Liu J, Yu Z, et al. Three years of biochar amendment alters soil physiochemical properties and fungal community composition in a black soil of northeast China[J]. Soil Biology and Biochemistry, 2017, 110: 56-67. [55] 王玫, 徐少卓, 刘宇松, 等. 生物炭配施有机肥可改善土壤环境并减轻苹果连作障碍[J]. 植物营养与肥料学报, 2018, 24(1): 220-227. [56] Chintala R, Schumacher T E, McDonald L M, et al. Phosphorus sorption and availability from biochars and soil/biochar mixtures[J]. CLEAN–Soil, Air, Water, 2014, 42(5): 626-634. [57] Gaskin J W, Steiner C, Harris K, et al. Effect of low-temperature pyrolysis conditions on biochar for agricultural use[J]. Transactions of the ASABE, 2008, 51(6): 2061-2069. [58] Omondi M O, Xia X, Nahayo A, et al. Quantification of biochar effects on soil hydrological properties using meta-analysis of literature data[J]. Geoderma, 2016, 274: 28-34. [59] Cai A, Xu M, Wang B, et al. Manure acts as a better fertilizer for increasing crop yields than synthetic fertilizer does by improving soil fertility[J]. Soil and Tillage Research, 2019, 189: 168-175. [60] 郑佳舜, 胡钧铭, 韦翔华, 等. 绿肥压青对粉垄稻田土壤微生物量碳和有机碳累积矿化量的影响[J]. 中国生态农业学报, 2021, 29(4): 691-703. [61] Zwart D C, Kim S H. Biochar amendment increases resistance to stem lesions caused by Phytophthora spp. in tree seedlings[J]. HortScience, 2012, 47(12): 1736-1740. [62] 刘勇, 赖佳, 孙小芳, 等. 根际微生态调控白菜根肿病发生的机制研究进展[J]. 微生物学通报, 2024, 51(2): 381-401. [63] Kasozi G N, Zimmerman A R, Nkedi-Kizza P, et al. Catechol and humic acid sorption onto a range of laboratory-produced black carbons (biochars) [J]. Environmental Science & Technology, 2010, 44(16): 6189-6195. [64] 解国玲, 张智浩, 吴流通, 等. 生物炭配施微生物菌剂对白菜根肿病防控效果研究[J]. 西南农业学报, 2023, 36(1): 105-111. [65] Xiong W, Guo S, Jousset A, et al. Bio-fertilizer application induces soil suppressiveness against Fusarium wilt disease by reshaping the soil microbiome[J]. Soil Biology and Biochemistry, 2017, 114: 238-247. [66] Ogawa M, Okimori Y. Pioneering works in biochar research, Japan[J]. Soil Research, 2010, 48(7): 489-500. [67] 束秀玉. 施用生物炭对西瓜幼苗枯萎病的影响及其作用机制[J]. 河南农业科学, 2020, 49(11): 91-97. [68] Jeffery S, Verheijen F G A, van der Velde M, et al. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis[J]. Agriculture, Ecosystems & Environment, 2011, 144(1): 175-187. [69] Luo T, Min T, Ru S, et al. Response of cotton root growth and rhizosphere soil bacterial communities to the application of acid compost tea in calcareous soil[J]. Applied Soil Ecology, 2022, 177: 104523 [70] Luo X X, Liu G C, Xia Y, et al. Use of biochar-compost to improve properties and productivity of the degraded coastal soil in the Yellow River Delta, China[J]. Journal of Soils and Sediments, 2017, 17(3): 780-789. [71] Hoyos-Carvajal L, Orduz S, Bissett J. Growth stimulation in bean (Phaseolus vulgaris L.) by Trichoderma[J]. Biological Control, 2009, 51(3): 409-416. [72] Mazhabi M, Nemati H, Rouhani H, et al. How may Trichoderma application affect vegetative and qualitative traits in tulip "Darwin hybride" cultivar[J]. Journal of Biological and Environmental Sciences, 2011, 5(15). 177-182 [73] 刘耀臣, 王萍, 刘润进, 等. 丛枝菌根真菌和生物炭对连作西瓜土壤肥力的影响[J]. 微生物学通报, 2020, 47(11): 3811-3821. |