[1] Lai T, Li J, Su J. Monitoring of beet armyworm Spodoptera exigua (Lepidoptera:Noctuidae) resistance to chlorantraniliprole in China[J]. Pesticide Biochemistry and Physiology, 2011, 101(3):198-205.
[2] 苏宏华, 宋彬, 李丽, 等. 甜菜夜蛾的抗性及抗性机理研究进展[J]. 应用昆虫学报, 2012, 49(6):1659-1663.
[3] 黄凯, 缪勇, 高希武, 等. 3种杀虫剂对稻田白背飞虱及捕食性天敌群落的影响[J]. 植物保护, 2016, 42(3):184-189.
[4] 史明山, 肖磊, 史丽丽, 等. 吡虫啉对小麦及其蚜虫天敌影响的研究进展[J]. 天津农业科学, 2016(6):103-106.
[5] Elango G, Rahuman A A, Kamaraj C, et al. Efficacy of medicinal plant extracts against Formosan subterranean termite, Coptotermes formosanus[J]. Industrial Crops and Products, 2012, 36(1):524-530.
[6] Govindarajan M, Karuppannan P. Mosquito larvicidal and ovicidal properties of Eclipta alba (L.) Hassk (Asteraceae) against chikungunya vector, Aedes aegypti (Linn.) (Diptera:Culicidae)[J]. Asian Pacific Journal of Tropical Medicine, 2011, 4(1):24-28.
[7] Kamaraj C, Rahman A A, Bagavan A, et al. Larvicidal efficacy of medicinal plant extracts against Anopheles stephensi and Culex quinquefasciatus (Diptera:Culicidae)[J]. Tropical Biomedicine, 2010, 27(2):211-219.
[8] 王莹莹, 任相亮, 姜伟丽, 等. 鳢肠对棉铃虫生长发育的影响[J]. 中国棉花, 2016, 43(7):16-19.
[9] Linton K J. Structure and function of ABC transporters[J]. Physiology, 2007, 22(2):122-130.
[10] Cohen E. Target receptors in the control of insect pests:Part Ⅱ[M]. Amsterdam:Elsevier Ltd, 2014.
[11] Bariami V, Jones C M, Poupardin R, et al. Gene amplification, ABC transporters and cytochrome P450s:unraveling the molecular basis of pyrethroid resistance in the dengue vector, Aedes aegypti[J]. PLoS Neglected Tropical Diseases, 2012, 6(6):e1692.
[12] You M, Yue Z, He W, et al. A heterozygous moth genome provides insights into herbivory and detoxification[J]. Nature Genetics, 2013, 45(2):220-225.
[13] Herrero S, Bel Y, Hernández-Martínez P, et al. Susceptibility, mechanisms of response and resistance to Bacillus thuringiensis toxins in Spodoptera spp[J]. Current Opinion in Insect Science, 2016, 15:89-96.
[14] Hernández-Martínez P, Ferré J, Escriche B. Susceptibility of Spodoptera exigua to 9 toxins from Bacillus thuringiensis[J]. Journal of Invertebrate Pathology, 2008, 97(3):245-250.
[15] Naimov S, Nedyalkova R, Staykov N, et al. A novel Cry9Aa with increased toxicity for Spodoptera exigua (Hübner)[J]. Journal of Invertebrate Pathology, 2013, 115(1):99-101.
[16] Hernández-Martínez P, Navarro-Cerrillo G, Caccia S, et al. Constitutive activation of the midgut response to Bacillus thuringiensis in Bt-resistant Spodoptera exigua[J]. PLoS ONE, 2010, 5(9):e12795.
[17] Park Y, González-Martínez R M, Navarro-Cerrillo G, et al. ABCC transporters mediate insect resistance to multiple Bt toxins revealed by bulk segregant analysis[J]. BMC Biology, 2014, 12(1):12-46.
[18] Xiao K, Shen K, Zhong J F, et al. Effects of dietary sodium on performance, flight and compensation strategies in the cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera:Noctuidae)[J]. Frontiers in Zoology, 2010, 7(1):1-8.
[19] 杨晋燕, 马小艳, 姜伟丽, 等. 鳢肠水提液对棉花和棉田常见杂草的化感作用[J]. 棉花学报, 2015, 27(1):53-61.
[20] 陈海燕, 杨亦桦, 武淑文, 等. 棉铃虫田间种群Bt毒素Cry1Ac抗性基因频率的估算[J]. 昆虫学报, 2007, 50(1):25-30.
[21] Salama H S, Foda M S, Zaki F N, et al. Potency of combinations of Bacillus thuringiensis and chemical insecticides on Spodoptera littoralis (Lepidoptera:Noctuidae)[J]. Journal of Economic Entomology, 1984, 77(4):885-890.
[22] Ren X, Chen R, Zhang Y, et al. A Spodoptera exigua cadherin serves as a putative receptor for Bacillus thuringiensis Cry1Ca toxin and shows differential enhancement of Cry1Ca and Cry1Ac toxicity[J]. Applied and Environmental Microbiology, 2013, 79(18):5576-5583.
[23] Vandesompele J, De Preter K, Pattyn F, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes[J]. Genome Biology, 2002, 3(7):1-12.
[24] Elango G, Rahuman A A, Bagavan A, et al. Laboratory study on larvicidal activity of indigenous plant extracts against Anopheles subpictus and Culex tritaeniorhynchus[J]. Parasitology Research, 2009, 104(6):1381-1388.
[25] 曾晓慧, 喻子牛, 胡萃. 苏云金杆菌Cry1C毒素对甜菜夜蛾幼虫生长发育、存活及取食行为的影响[J]. 浙江农业大学学报, 1999, 25(1):64-68.
[26] 蔡吉林, 束长龙, 宋福平, 等. 对小菜蛾协同增效的Cry1和Cry9类蛋白组合的筛选[J]. 植物保护, 2013, 39(1):66-70.
[27] 李耀明, 何可佳, 王小艺, 等. 茶皂素对Bt防治小菜蛾的增效作用[J]. 湖南农业科学, 2005(4):55-57.
[28] 姚安庆, 华宗炎. 猪毛蒿粗提物与Bt混配对菜青虫毒力的增效作用[J]. 湖北农业科学, 2004(6):49-51.
[29] Pardo-López L, Soberón M, Bravo A. Bacillus thuringiensis insecticidal three-domain Cry toxins:mode of action, insect resistance and consequences for crop protection[J]. Federation of European Biochemical Societies Microbiology Reviews, 2013, 37(1):3-22.
[30] Chahine S, O'Donnell M J. Interactions between detoxification mechanisms and excretion in Malpighian tubules of Drosophila melanogaster[J]. Journal of Experimental Biology, 2011, 214(3):462-468.
[31] Bard S M. Multixenobiotic resistance as a cellular defense mechanism in aquatic organisms[J]. Aquatic Toxicology, 2000, 48(4):357-389.
[32] 王孟伦, 梁沛, 金道超. 氯虫苯甲酰胺胁迫下小菜蛾ABCC1~ABCC5 mRNA的表达特征[J]. 应用昆虫学报, 2016, 53(3):581-588. |