[1] Che J, Liu B, Lin Y, et al. Draft Genome sequence of biocontrol bacterium Brevibacillus brevis strain FJAT-0809-GLX[J]. Genome Announcment, 2013, 1(2):e0016013. [2] Che J M, Liu B, Chen Z, et al. Identification of ethylparaben as the antimicrobial substance produced by Brevibacillus brevis FJAT-0809-GLX[J]. Microbiol Res, 2015, 172:48-56. [3] Hou Q, Wang C, Hou X, et al. Draft genome gequence of Brevibacillus brevis DZQ7, a plant growth-promoting rhizobacterium with broad-spectrum antimicrobial activity[J], Genome Announcments, 2015, 3(4):e00831-15. [4] Westman E L, Yan M, Waglechner N, et al. Self resistance to the atypical cationic antimicrobial peptide edeine of Brevibacillus brevis Vm4 by the N-acetyltransferase EdeQ[J]. Chemistry & Biology, 2013, 20(8):983-990. [5] Czerwinski A, Wojciechowska H, Andruszkiewicz R, et al. Total synthesis of edeine D[J]. The Journal of Antibiotics, 1983, 36(8):1001-1006. [6] Hettinger T P, Craig L C. Edeine. IV. Structures of the antibiotic peptides edeines A1 and B1[J]. Biochemistry, 1970, 9(5):1224-1232. [7] Czajgucki Z, Andruszkiewicz R, Kamysz W. Structure activity relationship studies on the antimicrobial activity of novel edeine A and D analogues[J]. Journal of peptide science:an official publication of the European peptide society, 2006, 12(10):653-662. [8] Kuryloborowska Z, Szer W. Inhibition of bacterial DNA synthesis by edeine. Effect onEscherichia colimutants lacking DNA polymerase I[J]. Biochimica Et Biophysica Acta, 1972, 287(2):236-245. [9] Cozzarelli N R. The mechanism of action of inhibitors of DNA synthesis[J]. Annual Review of Biochemistry, 1977, 46:641-668. [10] 黎定军, 廖晓兰, 罗宽. 湖南烟草青枯病土壤拮抗菌的筛选[J]. 湖南农业大学学报(自然科学版), 1997(3):61-65. [11] 黎定军, 陈武, 罗宽. 侧孢芽孢杆菌2-Q-9外泌抑菌物质性质[J]. 湖南农业大学学报(自然科学版), 2007, 33(4):97-100. [12] 李林. 生防菌Brevibacillus brevis X23的全基因组测序与抑菌机理研究[D]. 湖南:湖南农业大学, 2012. [13] 吕建林, 刘二明, 柏连阳, 等. 烟草青枯病生防菌混合接种对其定殖及防效的影响[J]. 中国生物防治学报, 2010, 26(2):200-205. [14] 张旭, 陈武, 杨玉婷, 等. 青枯菌拮抗菌2-Q-9的分子鉴定及抑菌相关基因的克隆[J]. 湖南农业大学学报(自然科学版), 2009, 35(3):233-236. [15] Chen W, Wang Y S, Li D J, et al. Draft genome sequence of Brevibacillus brevis strain X23, a biocontrol agent against bacterial wilt[J]. Journal of Bacteriology, 2012, 194(23):6634-6635. [16] 卢行. 短短芽孢杆菌X23外泌edeineB纯化和鉴定[D]. 长沙:湖南农业大学, 2014. [17] Mascher T, Helmann J D, Unden G. Stimulus perception in bacterial signal-transducing histidine kinases[J]. Microbiology and Molecular Biology Reviews, 2006, 70(4):910-938. [18] Murray E J, Kiley T B, Stanley-Wall N R. A pivotal role for the response regulator DegU in controlling multicellular behaviour[J]. Microbiology, 2009, 155(1):1-8. [19] Perego M, Spiegelman G B, Hoch J A. Structure of the gene for the transition state regulator abrB:regulator synthesis is controlled by the spo0A sporulation gene in Bacillus subtilis[J]. Molecular Microbiology, 1988, 2(6):689-699. [20] Molle V, Fujita M, Jensen S T, et al. The Spo0A regulon of Bacillus subtilis[J]. Molecular Microbiology, 2004, 50(5):1683-1701. [21] Zuber P. Specificity through flexibility[J]. Nature Structural Biology, 2000, 7(12):1079. [22] Marahiel M A, Nakano M M, Zuber P. Regulation of peptide antibiotic production in Bacillus[J]. Molecular Microbiology, 1993, 7(5):631-636. [23] Marahiel M A, Zuber P, Czekay G, et al. Identification of the promoter for a peptide antibiotic biosynthesis gene from Bacillus brevis and its regulation in Bacillus subtilis[J]. Journal of Bacteriology, 1987, 169(5):2215-2222. [24] Fawcett P, Eichenberger P, Losick R, et al. The transcriptional profile of early to middle sporulation in Bacillus subtilis[J]. Proceedings of the National Academy of Sciences, 2000, 97(14):8063-8068. [25] Stein T. Bacillus subtilis antibiotics:structures. syntheses and specific functions[J]. Molecular Microbiology, 2005, 56(4):845-857. [26] Weng J, Wang Y, Li J, et al. Enhanced root colonization and biocontrol activity of Bacillus amyloliquefaciens SQR9 by abrB gene disruption[J]. Applied Microbiology and Biotechnology, 2012, 97(19):8823-8830. [27] Liu Q S, Shen Q Y, Bian X Y, et al. Simple and rapid direct cloning and heterologous expression of natural product biosynthetic gene cluster in Bacillus subtilis via Red/ET recombineering[J]. Scientific Reports, 2016, 6:34623. [28] Fu J, Bian X Y, Hu S B, et al. Full-length RecE enhances linear-linear homologous recombination and facilitates direct cloning for bioprospecting[J]. Nature Biotechnology, 2012, 30(5):440-446. [29] 沈德新, 封志纯, 杜江. 细菌DNA提取方法比较[J]. 中国实用医刊, 2004, 31(10):20-22. [30] Muyrers J P, Zhang Y M, Stewart A F. Techniques:Recombinogenic engineering-new options for cloning and manipulating DNA[J]. Trends in Biochemical Sciences, 2001, 26(5):325-331. [31] Sharan S K, Thomason L C, Kuznetsov S G, et al. Recombineering:a homologous recombination-based method of genetic engineering[J]. Nature Protocols, 2009, 4(2):206-223. [32] Yu D, Ellis H M, Lee E C, et al. An efficient recombination system for chromosome engineering in Escherichia coli[J]. Proceedings of the National Academy of Sciences, 2000, 97(11):5978-5983. [33] Zhang Y M, Muyrers J P, Testa G, et al. DNA cloning by homologous recombination in Escherichia coli[J]. Nature Biotechnology, 2000, 18(12):1314-1317. [34] Takahashi W, Yamagata H, Yamaguchi K, et al. Genetic transformation of Bacillus brevis 47, a protein-secreting bacterium, by plasmid DNA[J]. Journal of Bacteriology, 1983, 156(3):1130-1134. [35] 何岚, 王柳懿, 朱琪, 等. 两种绘制枯草芽胞杆菌和大肠杆菌生长曲线方法的比较[J]. 天津农业科学, 2017, 23(5):14-18. [36] Dang Y L, Zhao F H, Liu X S, et al. Enhanced production of antifungal lipopeptide iturin A by Bacillus amyloliquefaciens LL3 through metabolic engineering and culture conditions optimization[J]. Microbial Cell Factories, 2019, 18(1):68. [37] Ferrari E, Henner D J, Perego M, et al. Transcription of Bacillus subtilis subtilisin and expression of subtilisin in sporulation mutants[J]. Journal of Bacteriology, 1988, 170(1):289-295. [38] Robertson J B, Gocht M, Marahiel M A, et al. AbrB, a regulator of gene expression in Bacillus, interacts with the transcription initiation regions of a sporulation gene and an antibiotic biosynthesis gene[J]. Proceedings of the National Academy of Sciences, 1989, 86(21):8457-8461. [39] Slack F J, Mueller J P, Strauch M A, et al. Transcriptional regulation of a Bacillus subtilis dipeptide transport operon[J]. Molecular Microbiology, 1991, 5(8):1915-1925. [40] Makarewicz O, Neubauer S, Preusse C, et al. Transition state regulator AbrB inhibits transcription of Bacillus amyloliquefaciens FZB45 phytase through binding at two distinct sites located within the extended phyC promoter region[J]. Journal of Bacteriology, 2008, 190(19):6467-6474. [41] Chu F, Kearns D B, Mcloon A, et al. A novel regulatory protein governing biofilm formation in Bacillus subtilis[J]. Molecular Microbiology, 2008, 68(5):1117-1127. |