[1] Wang Q, Ma Y, Wag G, et al. Integration of biofumigation with antagonistic microorganism can control Phytophthora blight of pepper plants by regulating soil bacterial community structure[J]. European Journal of Soil Biology, 2014, 61(5):58-67.
[2] 李世东, 缪作清, 高卫东. 我国农林园艺作物土传病害发生和防治现状及对策分析[J]. 中国生物防治学报, 2011, 27(4):433-440.
[3] Rupe J C, Robbins R T, Gbur E E. Effect of crop rotation on soil population densities of Fusarium solani and Heterodera glycines and on the development of sudden death syndrome of soybean[J]. Crop Protection, 1997, 16(6):575-580.
[4] Kwon J W, Kim S D. Characterization of an antibiotic produced by Bacillus subtilis JW-1 that suppresses Ralstonia solanacearum[J]. Journal of Microbiology and Biotechnology, 2014, 24(1):13-18.
[5] Yamamoto S, Shiraishi S, Kawagoe Y, et al. Impact of Bacillus amyloliquefaciens S13-3 on control of bacterial wilt and powdery mildew in tomato[J]. Pest Management Science, 2015, 71(15):725-727.
[6] Etebarian H R, Scott E S, Wicks T J. Trichoderma harzianum T39 and T. virens DAR 74290 as potential biological control agents for Phytophthora erythroseptica[J]. European Journal of Plant Pathology, 2000, 106(4):329-337.
[7] Lim J H, Kim S D. Biocontrol of phytophthora blight of red pepper caused by FPhytophthora capsici using Bacillus subtilis AH18 and B. licheniformis K11 formulations[J]. Journal of the Korean Society for Applied Biological Chemistry, 2010, 53(6):766-773.
[8] 顾真荣, 魏春妹, 马承铸. 枯草芽孢杆菌G3菌株抑制立枯丝核菌菌核形成的影响因子分析[J]. 中国生物防治, 2005, 21(1):33-36.
[9] 薛仁风, 武晶, 朱振东, 等. 水杨酸诱导普通菜豆镰孢菌枯萎病抗病性的研究[J]. 植物遗传资源学报, 2014, 15(5):1138-1143.
[10] Edgar C I, McGrath K C, Dombrecht B, et al. Salicylic acid mediates resistance to the vascular wilt pathogen Fusarium oxysporum in the model host Arabidopsis thaliana[J]. Australasian Plant Pathology, 2006, 35(6):581-591.
[11] Achuo E A, Audenaert K, Meziane H, et al. The salicylic acid dependent defense pathway is effective against different pathogens in tomato and tobacco[J]. Plant Pathology, 2004, 53(1):65-72.
[12] Reuven M, Zahavi T, Cohen Y. Controlling downy mildew (Plasmopara viticola) in field-grown grapevine with β-aminobutyric acid (BABA)[J]. Phytoparasitica, 2001, 29(2):125-133.
[13] Cohen Y. β-aminobutyric acid-induced resistance against plant pathogens[J]. Plant Disease, 2002, 86(5):448-457.
[14] 周程爱, 杨宇红, 梁俊峰, 等. β-氨基丁酸诱导植物抗病作用的研究[J]. 湖南农业大学学报, 2007, 33(1):68-71.
[15] Shailasree S, Sarosh B R, Vasanthi N S, et al. Seed treatmeat with β-aminobutyric acid protects Pennisetum glaucum systemically from Sclerospora graminicola[J]. Pest Management Science, 2001, 57(8):721-728.
[16] Frey P, Prior P, Marie C, et a1. Hrp-mutants of Pseudomonas solanacearum as potential biocontrol agents of tomato bacterial wilt[J]. Applied and Environmental Microbiology, 1994, 60(9):3175-3181.
[17] 杨宇红, 刘俊平, 杨翠荣, 等. 无致病力hrp-突变体防治茄科蔬菜青枯病[J]. 植物保护学报, 2008, 35(5):433-437.
[18] 李俊香, 古勤生. 四种化学诱抗剂防治黄瓜绿斑驳花叶病毒病的试验初报[J]. 中国蔬菜, 2015, 7:40-44.
[19] Kessann H, Staub T, Hofmann C, et al. Induction of systemic acquired disease resistance in plants by chemical[J]. Annual Review of Phytopathology, 1994, 32:439-459.
[20] Hond F. Systemic acquired resistance:a case of innovation in crop protection[J]. Security Journal, 1998, 21(1/2):58-76.
[21] 陈达. 拮抗菌和青枯菌无致病力突变株防控茄科作物青枯病的效应和机理研究[D]. 南京:南京农业大学, 2014.
[22] Cohen Y. Synergistic mixtures of an amino acid[P]. Isreal Patent, 2001, 123722.
[23] Guetsky R, Shitenberg D, Eland Y, et al. Improving biological control by combining biocontrol agents each with several mechanisms of disease suppression[J]. Phytopathology, 2002, 92(9):976-985.
[24] 王秋君, 常志州, 王光飞, 等. 铜绿假单胞菌结合生物熏蒸防控辣椒疫病的效果[J]. 江苏农业学报, 2015, 31(2):290-297.
[25] 王振, 李世东, 缪作清, 等. 有机物与淡紫紫孢霉对番茄根结线虫病的协同防治[J]. 中国生物防治学报, 2015, 31(1):130-138.
[26] Greyerbiehl J A, Hammerschmidt R. Induced resistance against Fusarium sambucinum in potato tuber tissue[J]. Phytopathology, 1998, 88(9):34.
[27] Oka Y, Spiegel Y, Cohen Y. Methods and compositions to protect crops against plant parasitic nematodes[P]. U. S. Patent, 2001, 6, 201,023 B1. |