[1] 谢子正, 饶汉宗, 柏超. 浙江省水稻“两迁”害虫发生特点及防控建议[J]. 浙江农业科学, 2018, 59(5): 780-782. [2] 程家安, 祝增荣. 2005年长江流域稻区褐飞虱暴发成灾原因分析[J]. 植物保护, 2006, 32(4): 1-4. [3] 朱平阳, 郑许松, 张发成, 等. 生态工程控害技术提高稻纵卷叶螟天敌功能团的种群数量[J]. 中国生物防治学报, 2017, 33(3): 351-363. [4] 张俊杰, 阮长春, 臧连生, 等. 我国赤眼蜂工厂化繁育技术改进及防治农业害虫应用现状[J]. 中国生物防治学报, 2015, 31(5): 638-646. [5] 盛承发, 宣维健, 伊伯仁, 等. 性诱剂监测吉林省水稻二化螟成虫动态及发生世代研究[J]. 生态学杂志, 2003, 22(4): 79-81. [6] 苏建伟, 宣维健, 盛承发, 等. 水稻二化螟性信息素技术:大量诱捕二化螟的防治效果研究[J]. 中国水稻科学, 2003, 17(2): 171-174. [7] 杜永均, 郭荣, 韩清瑞. 利用昆虫性信息素防治水稻二化螟和稻纵卷叶螟技术开发和应用进展[J]. 中国植保导刊, 2013, 33(11): 40-42. [8] 刘天伟, 陈运康, 许春梅, 等. 田间二化螟雄蛾对不同配比性信息素的嗅觉反应及性信息素识别相关基因表达水差异[J]. 昆虫学报, 2021, 64(5): 585-596. [9] Kondo A, Tanaka F. Action range of the sex pheromone of the rice stem borer moth, Chilo suppressalis (WALKER) (Lepidoptera: Pyralidae)[J]. Applied Entomology and Zoology, 1994, 29(1): 55-62. [10] 郭前爽, 陈立玲, 隋华, 等. 高剂量性信息素化合物环境下二化螟的求偶、交配和产卵[J]. 浙江大学学报(农业与生命科学版), 2022, 48(6): 787-796. [11] Chen Q H, Zhu F, Tian Z, et al. Minor components play an important role in interspecific recognition of insects: A basis to pheromone based electronic monitoring tools for rice pests[J]. Insects, 2018, 9(4): 192. [12] Kawazu K, Hasegawa J, Honda H, et al. Geographical variation in female sex pheromones of the rice leaffolder moth, Cnaphalocrocis medinalis: identification of pheromone components in Japan[J]. Entomologia Experimentalis et Applicata, 2000, 96: 103-109. [13] Kawazu K, Nagata K, Zhang Z, et al. Comparison of attractiveness in Japan and China of three synthetic pheromone blends based on geographic variations in the rice leaf folder, Cnaphalocrocis medinalis (Lepidoptera : Pyralidae)[J]. Bulletin of Entomological Research, 2002, 92: 295-299. [14] Wu J X, Wu X W, Chen H B, et al. Optimization of the sex pheromone of the rice leaf folder moth Cnaphalocrocis medinalis as a monitoring tool in China[J]. Journal of Applied Entomology, 2013, 137(7): 509-518. [15] Cheng J J, Chen Q H, Guo Q S, et al. Moth sex pheromones affect interspecific competition among sympatric species and possibly population distribution by modulating pre-mating behavior[J]. Insect Science, 2023, 30: 501-516. [16] Witzgall P, Kirsch P, Cork A. Sex pheromones and their impact on pest management[J]. Journal of Chemical Ecology, 2010, 36: 80-100. [17] Klassen D, Lennox M D, Dumont M J, et al. Dispensers for pheromonal pest control[J]. Journal of Environmental Management, 2023, 325(Part A): 116590. [18] Baker T C, Timothy D, Agenor M N. Disruption of sex pheromone communication in the black headed fire worm in Wisconsin cranberry marshes by using MSTRS™ devices[J]. Journal of Agricultural Entomology, 1997, 14(4): 449-457. [19] Baker T C, Myrick A J, Park K C. Optimizing the point-source emission rates and geometries of pheromone mating disruption mega-dispensers[J]. Journal of Chemical Ecology, 2016, 42(9): 1-12. [20] Shorey H H, Gerber R G. Use of puffers for disruption of sex pheromone communication among navel orangeworm moths (Lepidoptera: Pyralidae) in Almonds, Pistachios, and Walnuts[J]. Environmental Entomology, 1996, 25(5): 1154-1157. [21] Shorey H H, Gerber R G. Use of puffers for disruption of sex pheromone communication of codling moths (Lepidoptera: Tortricidae) in Walnut orchards[J]. Environmental Entomology, 1996, 25(6): 1398-1400. [22] Stelinski L L, Gut L J, Haas M, et al. Evaluation of aerosol devices for simultaneous disruption of sex pheromone communication in Cydia pomonella and Grapholita molesta (Lepidoptera: Tortricidae)[J]. Journal of Pest Science 2007, 80(4): 225-233. [23] Gavara A, Vacas S, Navarro I, et al. Airborne pheromone quantification in treated vineyards with different mating disruption dispensers against Lobesia botrana[J]. Insects, 2020, 11(5): 289. [24] Benelli G, Ricciardi R, Cosci F, et al. Sex pheromone aerosol emitters for Lobesia botrana mating disruption in Italian Vineyards[J]. Insects, 2023, 14(3): 270. [25] Alfaro C, Navarro-Llopis V, Primo J. Optimization of pheromone dispenser density for managing the rice striped stem borer, Chilo suppressalis (Walker), by mating disruption[J]. Crop Protection, 2009, 28: 567-572. [26] Vacas S, Alfaro C, Navarro-Llopis V, et al. Study on the optimum pheromone release rate for attraction of Chilo suppressalis (Lepidoptera: Pyralidae)[J]. Journal of Economic Entomology, 2009, 102: 1094-1100. [27] Vacas S, Navarro I, Primo J, et al. Mating disruption to control the striped rice stem borer: pheromone blend, dispensing technology and number of releasing points[J]. Journal of Asia-Pacific Entomology, 2016, 19(2): 253-259. [28] Chen R Z, Klein M G, Sheng C F, et al. Mating disruption or mass trapping, compared with chemical insecticides, for suppression of Chilo suppressalis (Lepidoptera: Crambidae) in northeastern China[J]. Journal of Economic Entomology, 2014, 107: 1828-1838. [29] Liang Y Y, Luo M, Fu X G, et al. Mating disruption of Chilo suppressalis from sex pheromone of another pyralid rice pest Cnaphalocrocis medinalis (Lepidoptera: Pyralidae)[J]. Journal of Insect Science, 2020, 20(3): 1-8. [30] Lou Y G, Ma B, Cheng J A. Attraction of the parasitoid Anagrus nilaparvatae to rice volatiles induced by the rice brown planthopper Nilaparvata lugens[J]. Journal of Chemical Ecology, 2005(10): 2357-2372. [31] Yan Q, Liu X L, Wang Y L, et al. Two sympatric spodoptera species could mutually recognize sex pheromone components for behavioral isolation[J]. Frontiers in Physiology, 2019, 10: 1256. [32] Jami L, Zemb T, Casas J, et al. How adsorption of pheromones on aerosols controls their transport[J]. ACS Central Science, 2020, 6(9): 1628-1638. [33] Noldus L P, Lenteren J C V,Lewis W J, et al. How Trichogramma parasitoids use moth sex pheromones as kairomones: orientation behaviour in a wind tunnel[J]. Physiological Entomology, 1991, 16: 313-327. [34] Glinwood R T, Du Y J, Powell W. Responses of aphid sex pheromones by pea aphid parasitoids Aphidius ervi and Aphidius eadyi[J]. Entomologia Experimentalis et Applicata, 1999, 92(2): 227-232. [35] Glinwood R T, Du Y J, Smiley D W M. Comparative responses of parasitoids to synthetic and plant-extracted nepetalactone component of aphid sex pheromones[J]. Journal of Chemical Ecology, 1999, 25(7): 1481-1488. [36] Wu S, Liu F, Zeng W, et al. Evaluation of floral-derived volatile blend for attracting aphid parasitoids and ladybeetles in the tobacco field[J]. Biological Control, 2022(172): 104979. [37] Gontijo L M. Engineering natural enemy shelters to enhance conservation biological control in field crops[J]. Biological Control, 2019, 130: 155-163. [38] Martinez-Sastre R, Pena R, Gonzalez-Ibanez A, et al. Top-down and bottom-up regulation of codling moth populations in cider apple orchards[J]. Crop Protection, 2021, 143: 1-8. [39] Denno R F, Gratton C, Peterson M A, et al. Bottom-up forces mediate natural-enemy impact in a phytophagous insect community[J]. Ecology, 2002, 83(5): 1443-1458. |