Chinese Journal of Biological Control ›› 2025, Vol. 41 ›› Issue (5): 1104-1118.DOI: 10.16409/j.cnki.2095-039x.2025.02.044
• RESEARCH REPORTS • Previous Articles
Lü Hong, ZOU Xiaolu, XU Zilu, QIN Nan, YIN Hui, REN Lu, ZHAO Xiaojun
Received:2024-09-11
Published:2025-10-22
CLC Number:
Lü Hong, ZOU Xiaolu, XU Zilu, QIN Nan, YIN Hui, REN Lu, ZHAO Xiaojun. Antifungal Effect and Mechanism of Bacillus velezensis LY7 on Colletotrichum scovillei[J]. Chinese Journal of Biological Control, 2025, 41(5): 1104-1118.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zgswfz.com.cn/EN/10.16409/j.cnki.2095-039x.2025.02.044
| [1] 联合国粮食及农业组织. https://www.fao.org/home/zh. [2] Than P P, Jeewon R, Hyde K D, et al. Characterization and pathogenicity of Colletotrichum species associated with anthracnose on chilli (Capsicum spp.) in Thailand[J]. Plant Pathology, 2008, 57(3): 562-572. [3] Damm U, Cannon P F, Liu F, et al. The Colletotrichum orbiculare species complex: Important pathogens of field crops and weeds[J]. Fungal Diversity, 2013, 61: 29-59. [4] Dean R, Van Kan J A L, Pretorius Z A, et al. The top 10 fungal pathogens in molecular plant pathology[J]. Molecular Plant Pathology, 2012, 13(4): 414-430. [5] Diao Y Z, Zhang C, Liu F, et al. Colletotrichum species causing anthracnose disease of chili in China[J]. Persoonia-Molecular Phylogeny and Evolution of Fungi, 2017, 38(1): 20-37. [6] Miliute I, Buzaite O, Baniulis D, et al. Bacterial endophytes in agricultural crops and their role in stress tolerance: a review[J]. Zemdirbyste Agriculture, 2015, 102(4): 465-478. [7] Zheng Y K, Qiao X G, Miao C P, et al. Diversity, distribution and biotechnological potential of endophytic fungi[J]. Annals of Microbiology, 2016, 66: 529-542. [8] Nguyen A D, Wang S L, Trinh T H T, et al. Plant growth promotion and fungal antagonism of endophytic bacteria for the sustainable production of black pepper (Piper nigrum L.)[J]. Research on Chemical Intermediates, 2019, 45: 5325-5339. [9] Algam S A, Xie G L, Coosemans J. Delivery methods for introducing endophytic Bacillus into tomato and their effect on growth promotion and suppression of tomato wilt[J]. Plant Pathology Journal, 2005, 4: 69-74. [10] Zheng X, Zhou M, Yoo H, et al. Spatial and temporal regulation of biosynthesis of the plant immune signal salicylic acid[J]. Proceedings of the National Academy of Sciences, 2015, 112(30): 9166-9173. [11] Chowdhury S P, Hartmann A, Gao X W, et al. Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42-a review[J]. Frontiers in Microbiology, 2015, 6: 780. [12] Kai M. Diversity and distribution of volatile secondary metabolites throughout Bacillus subtilis isolates[J]. Frontiers in Microbiology, 2020, 11: 559. [13] Zhao P, Li P, Wu S, et al. Volatile organic compounds (VOCs) from Bacillus subtilis CF-3 reduce anthracnose and elicit active defense responses in harvested litchi fruits[J]. AMB Express, 2019, 9: 119. [14] Wu S, Wu S. Processivity and the mechanisms of processive endoglucanases[J]. Applied Biochemistry and Biotechnology, 2020, 190(2): 448-463. [15] Fukamizo T. Chitinolytic enzymes catalysis, substrate binding, and their application[J]. Current Protein and Peptide Science, 2000, 1(1): 105-124. [16] Onaga S, Taira T. A new type of plant chitinase containing LysM domains from a fern (Pteris ryukyuensis): roles of LysM domains in chitin binding and antifungal activity[J]. Glycobiology, 2008, 18(5): 414-423. [17] Bonmatin J M, Laprévote O, Peypoux F. Diversity among microbial cyclic lipopeptides: iturins and surfactins. Activity-structure relationships to design new bioactive agents[J]. Combinatorial Chemistry & High Throughput Screening, 2003, 6(6): 541-556. [18] Buchoux S, Lai-Kee-Him J, Garnier M, et al. Surfactin-triggered small vesicle formation of negatively charged membranes: a novel membrane-lysis mechanism[J]. Biophysical Journal, 2008, 95(8): 3840-3849. [19] Maget-Dana R, Peypoux F. Iturins, a special class of pore-forming lipopeptides: biological and physicochemical properties[J]. Toxicology, 1994, 87(1-3): 151-174. [20] Deleu M, Paquot M, Nylander T. Effect of fengycin, a lipopeptide produced by Bacillus subtilis, on model biomembranes[J]. Biophysical Journal, 2008, 94(7): 2667-2679. [21] Yamamoto S, Shiraishi S, Suzuki S. Are cyclic lipopeptides produced by Bacillus amyloliquefaciens S13-3 responsible for the plant defence response in strawberry against Colletotrichum gloeosporioides?[J]. Letters in Applied Microbiology, 2015, 60(4): 379-386. [22] Cao S, Zheng Y, Yang Z, et al. Effect of methyl jasmonate on the antifungal activity of Colletotrichum acutatum infection in loquat fruit and the possible mechanisms[J]. Postharvest Biology and Technology, 2008, 49(2): 301-307. [23] Ghorbanpour M, Omidvari M, Abbaszadeh-Dahaji P, et al. Mechanisms underlying the protective effects of beneficial fungi against plant diseases[J]. Biological Control, 2018, 117: 147-157. [24] Xu S, Liu Y X, Cernava T, et al. Fusarium fruiting body microbiome member Pantoea agglomerans inhibits fungal pathogenesis by targeting lipid rafts[J]. Nature Microbiology, 2022, 7(6): 831-843. [25] Ren L, Zhou J, Yin H, et al. Antifungal activity and control efficiency of endophytic Bacillus velezensis ZJ1 strain and its volatile compounds against Alternaria solani and Botrytis cinerea[J]. Journal of Plant Pathology, 2022, 104(2): 575-589. [26] Gao Z F, Zhang B J, Liu H P, et al. Identification of endophytic Bacillus velezensis ZSY-1 strain and antifungal activity of its volatile compounds against Alternaria solani and Botrytis cinerea[J]. Biological Control, 2017, 105: 27-39. [27] 马东丽, 刘晓峰, 任璐, 等. 醉鱼草内生细菌ZJ1生防机制初探[J]. 山西农业科学, 2021, 49(5): 634-638. [28] 高振峰. 内生细菌ZSY-1对番茄灰霉病和早疫病的防治及促生效果研究[D]. 太原: 山西农业大学, 2018. [29] 国家质量技术监督局. GB/T 17980.33-2000. 农药田间药效试验准则(一)杀菌剂防治辣椒炭疽病[S]. 北京: 中国标准出版社, 2000. [30] Gauvry E, Mathot A G, Couvert O, et al. Effects of temperature, pH and water activity on the growth and the sporulation abilities of Bacillus subtilis BSB1[J]. International Journal of Food Microbiology, 2021, 337: 108915. [31] Xing Y X, Wei C Y, Mo Y, et al. Nitrogen-fixing and plant growth-promoting ability of two endophytic bacterial strains isolated from sugarcane stalks[J]. Sugar Technology, 2016, 18: 373-379. [32] Tilocca B, Cao A, Migheli Q. Scent of a killer: microbial volatilome and its role in the biological control of plant pathogens[J]. Frontiers in Microbiology, 2020, 11: 509409. [33] Audrain B, Farag M A, Ryu C M, et al. Role of bacterial volatile compounds in bacterial biology[J]. FEMS Microbiology Reviews, 2015, 39(2): 222-233. [34] Schmidt R, Cordovez V, De Boer W, et al. Volatile affairs in microbial interactions[J]. The ISME Journal, 2015, 9(11): 2329-2335. [35] Li X, Wang X, Shi X, et al. Antifungal effect of volatile organic compounds from Bacillus velezensis CT32 against Verticillium dahliae and Fusarium oxysporum[J]. Processes, 2020, 8(12): 1674. [36] Choub V, Won S J, Ajuna H B, et al. Antifungal activity of volatile organic compounds from Bacillus velezensis CE 100 against Colletotrichum gloeosporioides[J]. Horticulturae, 2022, 8(6): 557. [37] Liu Y, Liu J, Liu M, et al. Comparative non-targeted metabolomic analysis reveals insights into the mechanism of rice yellowing[J]. Food chemistry, 2020, 308: 125621. [38] Kalinger R S, Pulsifer I P, Hepworth S R, et al. Fatty acyl synthetases and thioesterases in plant lipid metabolism: diverse functions and biotechnological applications[J]. Lipids, 2020, 55(5): 435-455. [39] Bita C, Gerats T. Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops[J]. Frontiers in Plant Science, 2013, 4: 273. [40] Chowdhury S K, Dutta T, Chattopadhyay A P, et al. Isolation of antimicrobial Tridecanoic acid from Bacillus sp. LBF-01 and its potentialization through silver nanoparticles synthesis: a combined experimental and theoretical studies[J]. Journal of Nanostructure in Chemistry, 2021, 11: 573-587. [41] Wadsworth J M, Clarke D J, McMahon S A, et al. The chemical basis of serine palmitoyltransferase antifungal activity by myriocin[J]. Journal of the American Chemical Society, 2013, 135(38): 14276-14285. [42] Yamaji-Hasegawa A, Takahashi A, Tetsuka Y, et al. Fungal metabolite sulfamisterin suppresses sphingolipid synthesis through antifungal activity of serine palmitoyltransferase[J]. Biochemistry, 2005, 44(1): 268-277. [43] Shao J, Pei Z, Jing H, et al. Antifungal activity of myriocin against Fusarium graminearum and its antifungal activity on deoxynivalenol production in wheat grains[J]. Physiological and Molecular Plant Pathology, 2021, 114: 101635. [44] Baczewska A H, Dmuchowski W, Jozwiak A, et al. Effect of salt stress on prenol lipids in the leaves of Tilia 'Euchlora' [J]. Dendrobiology, 2014, 72: 177-186. [45] Bohlmann J, Keeling C I. Terpenoid biomaterials[J]. The Plant Journal, 2008, 54(4): 656-669. [46] Duraipandiyan V, Indwar F, Ignacimuthu S. Antimicrobial activity of confertifolin from Polygonum hydropiper[J]. Pharmaceutical Biology, 2010, 48(2): 187-190. [47] Hofius D, Sonnewald U. Vitamin E biosynthesis: biochemistry meets cell biology[J]. Trends in Plant Science, 2003, 8(1): 6-8. [48] Ashraf M, Foolad M R. Roles of glycine betaine and proline in improving plant abiotic stress resistance[J]. Environmental and Experimental Botany, 2007, 59(2): 206-216. [49] Feng B, Chen D, Jin R, et al. Bioactivities evaluation of an endophytic bacterial strain Bacillus velezensis JRX-YG39 inhabiting wild grape[J]. BMC Microbiology, 2022, 22(1): 170. [50] Yan Y, Xu W, Hu Y, et al. Bacillus velezensis YYC promotes tomato growth and induces resistance against bacterial wilt[J]. Biological Control, 2022, 172: 104977. [51] Nie L J, Ye W Q, Xie W Y, et al. Biofilm: New insights in the biological control of fruits with Bacillus amyloliquefaciens B4[J]. Microbiological Research, 2022, 265: 127196. |
| [1] | LI Jie, TAO Yu, CHEN Fang, SHI Xiaojiang, LUO Fuqing, XIAO Feng, PANG Zhaoliang, LUO Hua, LI Xin. Preparation of Bacillus velezensis XY40-1 Suspension Concentrate and Its Control Effect on Phytophthora Blight of Pepper [J]. Chinese Journal of Biological Control, 2025, 41(4): 851-861. |
| [2] | XU Wen, XIE Xia, LI Pan, DONG Qianqian, SUN Runhong, ZHANG Jie, XIA Mingcong, WU Chao, YANG Lirong. Biocontrol Characteristics of Bacillus velezensis YB-1465 and Its Biocontrol Effects on wheat crown rot [J]. Chinese Journal of Biological Control, 2025, 41(4): 877-886. |
| [3] | WU Mengjing, HUANG Peng, ZHANG Jie, ZHENG Luping, YU Deyi, LIN Sheng, WU Zujian, YAO Jinai. Identification of Bacillus velezensis BV-3 and Its Control Effect on Southern Corn Leaf Blight [J]. Chinese Journal of Biological Control, 2025, 41(4): 887-894. |
| [4] | FAN Wanwan, WANG Zhenyu, ZHANG Haiyan, CUI Xiaowei, FENG Lanlan, GAO Meng. Isolation, Identification and Biological Control of Antagonistic Bacteria against Peanut Southern Blight [J]. Chinese Journal of Biological Control, 2025, 41(4): 906-915. |
| [5] | WU Zifei, LIN Shengnan, SHI Fangfang, WANG Xingwen, WANG Zhihui, WANG Ning, SHI Yingwu, LUO Ming, GUO Wenchao, BAO Huifang. Colonization Dynamics and Whole-genome Sequencing Analysis of Biocontrol Bacteria Bacillus velezensis JS6-1 [J]. Chinese Journal of Biological Control, 2025, 41(2): 335-346. |
| [6] | XIE Jiufeng, CHEN Mengxiao, WANG Bo, PEI Yaxin, ZHANG Jiran, CHEN Hongge, YANG Sen. Effect of Bacillus velezensis EEAM 10B on Peanut Southern Blight and Whole Genome Sequencing Analysis [J]. Chinese Journal of Biological Control, 2025, 41(2): 347-361. |
| [7] | LI Xingchen, WANG Qian, SHENG Qiang, WANG Yifan, LUO Ming. Screening and Effect of Compatible Bactericides Funqicides Combinated Bacillus velezensis FX1 on Pear Fire Blight [J]. Chinese Journal of Biological Control, 2025, 41(2): 384-395. |
| [8] | ZHANG Rongsheng, HUANG Ruyu, QIAO Junqing, YU Junjie, QI Zhongqiang, DU Yan, YU Mina, SONG Tianqiao, CAO Huijuan, PAN Xiayan, LIU Youzhou, LIU Yongfeng. Optimization of Fermentation for Iturin High Production of Bacillus velezensis Jt84 [J]. Chinese Journal of Biological Control, 2025, 41(1): 80-90. |
| [9] | ZHANG Xiaoyun, WANG Xuemei, CONG Rong, CHEN Xiuye, LU Xiuyun, LI Shezeng, GUO Qinggang, MA Ping. Screening of Bacillus velezensis HMB28023 for Controlling Grape Gray Mold and Identification of Its Antifungal Active Compounds [J]. Chinese Journal of Biological Control, 2025, 41(1): 122-131. |
| [10] | CUI Wenyan, LUO Xiyan, ZHANG Jiajia, CHE Jingjing, ZOU Yuan, CHEN Kunxiu, HE Pengjie. Efficacy of Bacillus velezensis B9601-Y2 on Leaf Spot Disease of Honeysuckle [J]. Chinese Journal of Biological Control, 2024, 40(6): 1347-1354. |
| [11] | ZHANG Meng, CHEN Sen, TANG Dengguo, HUANG Yan, LONG Zhijian, WANG Boya, HU Shanglian, CAO Ying. Comparative Transcriptomic Profiles Revealed JA- and SA- Regulated Soft Rot Disease Resistance by Bacillus velezensis BCP6 in Amorphophallus konjac [J]. Chinese Journal of Biological Control, 2024, 40(6): 1375-1385. |
| [12] | YANG Yuwen, LIU Dehua, WANG Chengliang, MENG Yonghong, GUAN Wei, ZHAO Tingchang. Identification and Biological Characteristics of Bacillus velezensis ZY1 against Bacterial Fruit Blotch [J]. Chinese Journal of Biological Control, 2024, 40(6): 1430-1438. |
| [13] | GU Yuxin, WANG Shuhe, WANG Shenghao, LIU Shengming, KANG Yebin. Isolation and Identification of Endophytic Bacteria from Walnut Leaves and Their Biocontrol Potential against Walnut Anthracnose [J]. Chinese Journal of Biological Control, 2024, 40(5): 1099-1112. |
| [14] | ZHU Lihong, QIU Haiping, XIANG Huijuan, LIU Hao, SHI Yuefeng, YUAN Yuwei. Identification, Antimicrobial Activity, and Optimization of Fermentation Medium of Endophytic Bacterium Strain ZL34 from Carya cathayensis [J]. Chinese Journal of Biological Control, 2024, 40(4): 894-904. |
| [15] | WANG Fang, Ning Liping, DENG Wenqiao, Qin Jingjing, XU Xiumei, SUN Zhengxiang, CHENG Yi. Biocontrol Activity and Growth Promoting Effect of Bacillus velezensis C1B1 [J]. Chinese Journal of Biological Control, 2024, 40(4): 948-957. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||