Chinese Journal of Biological Control ›› 2025, Vol. 41 ›› Issue (6): 1494-1508.DOI: 10.16409/j.cnki.2095-039x.2025.11.012
• TECHNICAL REVIEWS • Previous Articles
WANG Endong, YAN Hong, ZHANG Bo, XU Xuenong
Received:2024-09-26
Published:2025-12-22
CLC Number:
WANG Endong, YAN Hong, ZHANG Bo, XU Xuenong. Application of Predatory Mite in Vegetable Production[J]. Chinese Journal of Biological Control, 2025, 41(6): 1494-1508.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zgswfz.com.cn/EN/10.16409/j.cnki.2095-039x.2025.11.012
| [1] 徐学农, 吕佳乐, 王恩东. 捕食螨繁育与应用[J]. 中国生物防治学报, 2015, 31(5): 647-656. [2] 吴伟南. 捕食螨的交替食物在植食性节肢动物的生物防治中的重要作用[J]. 江西农业大学学报, 1994, 16(3): 253-256. [3] 徐学农, 吕佳乐, 王恩东. 捕食螨在中国的研究与应用[J]. 中国植保导刊, 2013, 33(10): 26-34. [4] Pritchard A E, Baker E W. A revision of the spider family Tetranychidea[J]. The Pacific Coast Entomological Society, 1995, 2: 461-472. [5] 蔡仁莲, 郭建军, 金道超. 蔬菜叶螨发生特点及其生物防治的研究进展[J]. 贵州农业科学, 2014, 41: 81-86. [6] Gerson U. Biology and control of the broad mite, Polyphagotarsonemus latus (Banks) (Acari: Tar-sonemidae)[J]. Experimental and Applied Acarology, 1992, 13: 163-178. [7] 于东坡, 高九思, 高阳. 侧多食跗线螨天敌种类调查及其应用前景研究[J]. 安徽农业科学, 2009, 37(15): 7050-7052, 7055. [8] Jeppson L R, Keifer H H, Baker E W. Mites Injurious to Economic Plants[M]. Berkeley: University of California Press, 1975, 614. [9] Massee A M. An eriothyid mite injurious to tamato[J]. Bull Entomology, 1937, 28: 403. [10] Parrott D J, Farrar C A. Historical perspective and current world status of tomato russet mite (Acarina: Eriophydae)[J]. Miscellaneous Publications of the Entomogical Society of America, 1996, 63: 1-19. [11] 王永卫, 王旭疆, 袁丽萍, 等. 罗宾根螨的初步研究[J]. 蛛形学报, 1997, 6(1): 53-57. [12] 范青海, 苏秀霞, 陈艳. 台湾根螨属种类、寄主、分布于检验技术[J]. 昆虫知识, 2007, 44(4): 596-602. [13] 张志轩. 葱蒜类蔬菜刺足根螨的为害及防治[J]. 长江蔬菜, 2009, 1: 19. [14] 袁伟方, 罗宏伟. 蔬菜蓟马防治技术研究进展[J]. 热带农业科学, 2014, 34(9): 69-74. [15] Kay I R, Herron G A. Evaluation of existing and new insecticides including spirotetramat and pyridalyl to control Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) on peppers in Queensland[J]. Australian Journal Entomology, 2010, 49: 175-181. [16] Thalavaisundaram S, Herron G A, Clift A D, et al. Pyrethroid resistance in Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) and implications for its management in Australia[J]. Australian Journal Entomology, 2008, 47: 64-69. [17] Tamotsu M. Effect of temperature on development and reproduction of the onion thrips, Thrips tabaci Lindeman (Thysanoptera: Thripidae), on pollen and honey solution[J]. Applied Entomology and Zoology. 2000, 35: 499-504. [18] 褚栋, 张友军. 烟粉虱, 蔬菜病虫害, 中国农作物病虫害(中册)(第三版)[M]. 北京: 中国农业出版社, 2015, 346-352. [19] Brown J K, Bird J, Frohlich D, et al. The relevance of variability within the Bemisia tabaci species complex to epidemics caused by subgroup III geminiviruses[J]. IOBC-WPRS Bulletin, 1996, 28(1): 77-89. [20] Byrne F J, Gorman K J, Cahill M, et al. The role of B-type esterases in conferring insecticide resistance in the tobacco whitefly, Bemisia tabaci (Genn.)[J]. Pest Management Science, 2000, 56: 867-874. [21] Gorman K, Slater R, Blande J D, et al. Cross-resistance relationships between neonicoitinoides and pymetrozine in Bemisia tabaci (Hemiptera: Aleyrodidae)[J]. Pest Management Science, 2010, 66: 1186-1190. [22] Bi J K, Toscani N C. Current status of the greenhouse whitefly, Trialeurodes vaporariorum, suscepti-bility to neonicotinoid and conventional insecticides on strawberries in southern California[J]. Pest Management Science, 2007, 63: 747-752. [23] Vanninen I. Biology of the shore fly Scatella stagnalis in rockwood under greenhouse conditions[J]. Entomologia Experimentalis et Applicata, 2001, 98: 317-328. [24] 李红, 朱芬, 周兴苗, 等. 危害西瓜幼苗的韭菜迟眼蕈蚊的生物学特性及防治[J]. 昆虫知识, 2007, 44(6): 834-836, 951. [25] 姚树萍, 贾丽. 韭菜迟眼蕈蚊幼虫发生与防治[J]. 西北园艺(综合), 2017(3): 42-44. [26] 谢辉. 植物线虫分类学(第二版)[M]. 北京: 高等教育出版社, 2005. [27] Abad P, Gouzy J, Aury J M, et al. Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita[J]. Nature Biotechnology, 2008, 26(8): 909-915. [28] Mcmurtry J, Croft B. Life-styles of phytoseiid mites and their roles in biological control[J]. Annual Review of Entomology, 1997, 42: 291-321. [29] Laing J. Life history and life table of Phytoseiulus persimilis Athias-Henriot[J]. Acarologia, 1968, 10: 578-588. [30] 吴伟南, 欧阳定慧, 钱兴, 等. 温度对智利小植绥螨的影响及其防治皮氏叶蟎的初步试验[J]. 植物保护学报, 1982, 9(4): 279-281. [31] 吴伟南. 叶螨属的专性捕食者——智利小植绥螨[J]. 江西植保, 1986, 3: 25-27. [32] Amano H, Chant D. Life history and reproduction of two species of predacious mites, Phytoseiulus persimilis Athias-Henriot and Amblyseius andersoni (Chant) (Acarina: Phytoseiidae)[J]. Canadian Journal of Zoology, 1977, 55: 1978-1983. [33] Escudero L, Ferragut F. Life-history of predatory mites Neoseiulus californicus and Phytoseiulus persimilis (Acari: Phytosiidae) on four spider mite species as prey, with special reference to Tetranychus evansi (Acari: Tetranychidae)[J]. Biological Control, 2005, 32: 378-384. [34] Schulten G, Arendonk R V, Russell V, et al. Copulation, egg reproduction and sex-ratio in Phytoseiulus persimilis and Amblyseius bibens (Acari: Phytoseiidae)[J]. Entomologia Experimentalis et Applicata, 1978, 24: 145-153. [35] Stenseth C. Effect of temperature and humidity on the development of Phytoseiulus persimilis and its ability to regulate populations of Tetranychus urticae (Acarina: Phytoseiidae. Tetranychidae)[J]. Entomophaga 1979, 24: 311-317. [36] 郭玉杰, 董慧芳. 变温变湿对智利小植绥螨发育和存活的影响[J]. 生物防治通报, 1987, 3(1): 19-22. [37] 王银方, 吐尔逊, 郭文超, 等. 智利小植绥瞒对土耳其斯坦叶螨、截形叶螨、朱砂叶螨的捕食作用[J]. 新疆农业科学, 2013, 50: 839-844. [38] 王银方, 吐尔逊, 郭文超, 等. 智利小植绥螨对土耳其斯坦叶螨的捕食效能评价[J]. 环境昆虫学报, 2013, 35: 176-181. [39] 王银方, 吐尔逊, 何江, 等. 智利小植绥螨以土耳其斯坦叶螨为食的试验种群生命表[J]. 中国生物防治, 2014, 30: 329-333. [40] Croft B, Monetti L, Pratt P. Comparative life histories and predation types: are Neoseiulus californicus and N. fallacis (Acari: Phytoseiidae) similar tyoe Ⅱ selective predators of spider mites[J]. Environmental Enviromental Entomology, 1998, 27: 531-538. [41] Xu X N, Wang B M, Wang E D, et al. Comments on the identity of Neoseiulus californicus sensu lato (Acari: Phytoseiidae) with a redescription of this species from southern China[J]. Systematic & Applied Acarology, 2013, 18(4): 329-344. [42] 张倩倩, 范青海. 猎物对巴氏钝绥螨生长发育和繁殖的影响[J]. 华东昆虫学报, 2005, 14(2): 165-168. [43] 周万琴, 徐春玲, 徐学农, 等. 巴氏新小绥螨的新特性——捕食植物线虫及其发育繁殖[J]. 中国生物防治学报, 2012, 28(4): 484-489. [44] Hessen N A, Parrella M P. Predatory mites help control thrips on floriculture crops[J]. California Agriculture, 1990, 44(6): 19-21. [45] Nomikou M, Janssen A, Schraag R, et al. Phytoseiid predators as potential biological control agents for Bemisia tabaci[J]. Experimental and Applied Acarology, 2001, 25: 271-291. [46] Remakers P M J. Mass production and introduction of Amblyseius mckenzler and A. cucumeris[J]. Bulletin SROP, 1983, 6(3): 203-206. [47] 李美, 符悦冠. 胡瓜新小绥螨研究进展[J]. 华南热带农业大学学报, 2006, 12(4): 32-38. [48] Xu X N, Enkegaard A. Prey preference of the predatory mite, Amblyseius swirskii between first instar western flower thrips Frankliniella occidentalis and nymphs of the two-spotted spider mite Tetranychus urticae[J]. Journal Insect Science, 2010, 10: 1-11. [49] Messelink G, van Maanen R, van Steenpaal S E F, et al. Biological control of thrips and whiteflies by a shared predator: Two pests are better than one[J]. Biological Control, 2008, 44: 372-379. [50] van Maanen R, Vila E, Sabelis S W, et al. Biological control of broad mite (Polyphagotarsonemus latus) with the generalist predator Amblyseius swirskii[J]. Experimental and Applied Acarology, 2010, 52: 29-34. [51] 郭颖伟. 斯氏钝绥螨室外存活及其与两种本土捕食螨间IGP关系[D]. 北京: 中国农业科学院, 2014. [52] 孟瑞霞, 张青文, 刘小侠. 利用植绥螨防治烟粉虱的研究进展[J]. 昆虫知识, 2007, 44(6): 798-803. [53] Calvo F J, Knapp M, van Houten Y M, et al. Amblyseius swirskii: What made this prodatory mite such a successful biocontrol agent?[J] Experimental and Applied Acarology, 2015, 64(5): 419-433. [54] 徐学农, 吕佳乐, 王恩东. 国际捕食螨研发与应用的热点问题及启示[J]. 中国生物防治学报, 2013, 29: 163-174. [55] Guo Y W, Lv J L, Jiang X H, et al. 2016. Intraguild predation between Amblyseius swirskii and Amblyseius orientalis/Neoseiulus californicus (Acari: Phytoseiidae) and their development on intraguild prey[J]. Scientific Reports, 2016, 6: 22292. [56] 盛福敬. 东方钝绥螨替代猎物的研究及防治烟粉虱的初步探索与应用[D]. 北京: 中国农业科学院, 2013. [57] 杨静逸, 盛福敬, 宋子伟, 等. 东方钝绥螨与津川钝绥螨对烟粉虱卵及1龄若虫的功能反应比较[J]. 中国生物防治学报, 2018, 34(2): 214-219. [58] Yang J Y, Lv J L, Liu J Y, et al. Prey preference, reproductive performance, and life table of Amblyseius tsugawai (Acari: Phytoseiidae) feeding on Tetranychus urticae and Bemisia tabaci[J]. Systematic & Applied Acarology, 2019, 24(3): 404-413. [59] 朱群, 金道超, 郭建军. 贵州植绥螨及其优势种概述[J]. 贵州农业科学, 2006, 34(5): 114-116. [60] 马盛峰, 郭建军. 尼氏真绥螨(Euseius nicholsi)的研究进展[J]. 贵州农业科学, 2011, 39(4): 92-95. [61] 徐学农, 王恩东. 国外昆虫天敌商品化现状及分析[J]. 中国生物防治, 2007, 23(4): 373-382. [62] Chant D. An experiment in biological control of Tetranychus telarius (L.) (Acarina: Tetranychidae) in a greenhouse using the predacious mite Phytoseiulus persimilis Athias-Henriot (Phytoseiidae)[J]. The Canadian Entomologist, 1961, 93: 437-443. [63] Van Lenteren J, Woets J V. Biological and integrated pest control in greenhouses[J]. Annual Review of Entomology, 1988, 33: 239-269. [64] Drukker B, Janssen A, Ravensberg W, et al. Improved control capacity of the mite predator Phytoseiulus persimilis (Acari: Phytoseiidae) on tomato[J]. Experimental and Applied Acarology, 1997, 21: 507-518. [65] 杨子琦, 陶方玲, 曹华国. 等. 应用智利小植绥螨防治茶叶、蔬菜、花卉上叶螨的效果[J]. 生物防治通报, 1989, 5: 134. [66] 杨子琦, 陶方玲, 曹华国, 等. 释放智利小植绥螨防治蔬菜上神泽氏叶螨的田间试验[J]. 生物防治通报, 1990, 14: 88-89. [67] 宫亚军, 王泽华, 王甦, 等. 智利小植绥螨对茄子二斑叶螨控制效果研宄[J]. 应用昆虫学报, 2015, 52: 1123-1130. [68] 王恩东, 吕佳乐, 张博, 等. 智利小植绥螨商品化生产与应用[J]. 中国生物防治学报, 2021, 37(4): 651-654. [69] Yanar D, Gebologlu N, Cakar T, et al. The use of predatory mite Phytoseiulus persimilis (Acari: phytoseiidae) in the control of two- spotted spider mite (Tetranychus urticae Koch, Acari: Tetranychidae) at greenhouse cucumber production in Tokat Province, Turkey[J]. Applied Ecology and Environmental Research, 2019, 17: 2033-2041. [70] Sharma N, Sharma P L, Verma S C, et al. Biology, demographic parameters and predatory potential of the predatory mite Neoseiulus longispinosus against Tetranychus urticae on different vegetable crops[J]. Phytoparasitica, 2024, 52: 47. [71] Gerson U, Weintraub P G. Mites (Acari) as a factor in greenhouse management[J]. Annual Review of Entomology, 2012, 57: 229-247. [72] 吴千红, 陈晓峰. 拟长毛钝绥螨(Amblyseius pseudolongispinosus)对朱砂叶螨(Tetranychus cinnabarinus)的捕食效应[J]. 复旦学报, 1988, 27(4): 414-420. [73] 候爱平, 张艳璇, 杨孝泉, 等. 利用长毛钝绥螨控制冬瓜上二斑叶螨研究[J]. 昆虫天敌, 1996, 18(1): 29-33. [74] Kazak C, Karut K, Doker I. Indigenous populations of Neoseiulus californicus and Phytoseiulus persimilis (Acari: Phytoseiidae): single and combined releases against Tetranychus urticae (Acari: Tetranychidae) on greenhouse eggplant[J]. International Journal of Acarology, 2015, 41: 108-114. [75] Messelink G, van Maanen R, van Holstein-sai R, et al. Pest species diver-sity enhances control of spider mites and whiteflies by a generalist phytoseiid predator[J]. BioControl, 2010, 55: 387-398. [76] 徐淑华, 李天娇, 王爱珺, 等. 捕食螨对设施黄瓜蓟马和叶螨的防效评价[J]. 中国植保导刊, 2021, 41(9): 65-66, 102. [77] 张艳璇, 林坚贞, 季洁, 等. 胡瓜钝绥螨控制蔬菜害螨的研究与应用[J]. 现代农业科技, 2009, 9: 122-124. [78] 张征. 利用胡瓜钝绥螨控制茄子害螨[J]. 中国蔬菜, 2006, 8: 52. [79] 宣丽霞, 胡敏, 王丽梅. 不同密度捕食螨对日光温室茄子红蜘蛛防控效果[J]. 农业科技与信息, 2020, 23: 32-33, 36. [80] Weintraub P G, Kleitman S, Mori R, et al. Control of broad mites (Polyphagotarsonemus latus (Banks)) on organic greenhouse sweet peppers (Capsicum annuum L.) with the predatory mite, Neoseiulus cucumeris (Oudemans)[J]. Biological Control, 2003, 27: 300-309. [81] Jovicich E, Cantliffe D J, Stoffella P J, et al. Predatory mites released on transplants can protect from early broad mite infestations[J]. Acta Horticulturae, 2008, 782: 229-233. [82] 朱睿, 郭建军, 乙天慈, 等. 加州新小绥螨对侧多食跗线螨的捕食潜能[J]. 植物保护学报, 2019, 46(2): 465-471. [83] Tal C, Coll M, Weintraub P G. Biological control of Polyphagotarsonemus latus (Acari: Tarsonemi-dae) by the predaceous mite Amblyseius swirskii (Acari: Phytoseiidae)[J]. IOBC/WPRS Bulletin, 2007, 30(5): 111-115. [84] Kumar V, Mehra L, Mckenzie C L, et al. “Predator-In-First”: A preemptive biological control strategy for sustainable management of pepper pests in Florida[J]. Sustainability, 2020, 18: 7816. [85] Easterbrook M A, Fitzgerald J D, Solomon M G. Biological control of strawberry tarsonemid mite Phytonemus pallidus and two-spotted spider mite Tetranychus urticae, on strawberry in the UK using species of Neoseiulus (Amblyseius) (Acari: Phytoseiidae)[J]. Experimental and Applied Acarology, 2001, 25: 25-36. [86] Brodeur J, Bouchard A, Turcotte G. Potential of four species of predatory mites as biological control agents of the tomato russet mite, Aculops lycopersici (Massee) (Eriophyidae)[J]. The Canadian Entomologist, 1997, 129: 1-6. [87] Castagnoli M, Sauro S, Liguori M. Evaluation of Neoseiulus californicus (McGregor) (Acari Phytoseiidae) as a candidate for the control of Aculops lycopersici (Tryon) (Acari Eriophyoidea): a preliminary study[J]. Redia, 2003, 86: 97-100. [88] Park H H, Shipp L, Buitenhuis R. Predation, development, and oviposition by the predatory mite Amblyseius swirkii (Acari: Phytoseiidae) on tomato russet mite (Acari: Eriophyidae)[J]. Journal Economic Entomology, 2010, 103: 563-569. [89] Momen F M, Abdel-khaleka A. Effect of the tomato rust mite Aculops lycopersici (Acari: Eriophyidae) on the development and reproduction of three predatory phytoseiid mites[J]. International Journal Tropical Insect Science, 2008, 28: 53-57. [90] De Moraes G J, Lima H C. Biology of Euseius concordis (Chant) (Acarina, Phytoseiidae): a predator of the tomato russet mite[J]. Acarologia, 1983, 24: 251-255. [91] Fischer S, Kloetzli F, Falquet L, et al. An investigation on biological control of the tomato russet mite Aculops lycopersici (Massee) with Amblyseius andersoni (Chant) [J]. IOBC-WPRS Bulletin, 2005, 28(1): 99-102. [92] Pijnakker J, Hurriyet A, Petit C. Evaluation of phytoseiid and Iolinid mites for biological control of the tomato russet mite Aculops lycopersici (Acari: Eriophyidae)[J]. Insects, 2022, 13(12): 1146. [93] Lesna I, Sabelis M W, Bolland H R, et al. Candidate natural enemies for control of Rhizoglyphus robini Claparede (Acari: Astigmata) in lily bulbs: exploration in the field and pre-selection in the laboratory[J]. Experimental and Applied Acarology, 1995, 19: 655-669. [94] Lesna I, Conijn C G M, Sabelis M W, et al. Biological control of the bulb mite, Rhizoglyphus robini, by the predatory mite, Hypoaspis aculeifer, on lilies: predator-prey dynamics in the soil, under greenhouse and field conditions[J]. Biocontrol Science Technology, 2000, 10: 179-193. [95] 张婍, 王晶晶, 李正跃, 等. 西花蓟马天敌种类及主要种类的控害潜能[J]. 植物保护, 2010, 36(4): 41-48. [96] 李美, 符悦冠. 胡瓜钝绥螨研究进展[J]. 华南热带农业大学学报, 2006, 12(4): 32-38. [97] Ahmed N, Lou M. Efficacy of two predatory phytoseiid mites in controlling the western flower thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) on cherry tomato grown in a hydroponic system[J]. Egyptian Journal of Biological Pest Control, 2018, 28: 15. [98] Houten Van Y M, Rijn Van C J, Tanigoshi L K, et al. Preselection of predatory mites to improve year-round biological control of western flower thrips in greenhouse crop[J]. Entomolgia Experimentalis et Applicata, 1995, 74: 225-234. [99] Steiner M Y, Goodwin S, Wellham T M, et al. Biological studies of the Australian predatory mite Typhlodromips montdorensis (Schicha) (Acari: Phytoseiidae), a potential biocontrol agent for western flower thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae)[J]. Australian Journal of Entomology, 2003, 42: 124-130. [100] 张金平, 范青海, 张帆. 应用实验种群生命表评价巴氏新小绥螨对西花蓟马的控制能力[J]. 环境昆虫学报, 2008, 30(3): 229-232. [101] Oliver B, Rainer M, Han-Michael P. The edaphic phase in the ontogenesis of Franklinie occidentalis and comparison of Hypoaspis miles and Hypoaspis aculeifer as predators of soil-dwelling thrips stages[J]. Biological Control, 2004, 30: 17-24. [102] Gillespie D R. Biological control of thrips (Thysanoptera: Thripidae) on greenhouse cucumber by Amblyseius cucumeris[J]. Entomophaga, 1989, 34(2): 185-192. [103] Madadi H, Enkegaard A, Brodsgaard H F, et al. Host plant effects on the functional response of Neoseiulus cucumeris to onion thrips larvae[J]. Journal Applied Entomology, 2007, 131: 728-733. [104] Hansen L S. Control of Thrips tabaci (Thysanopertra: Thripidae) on glasshouse cucumber using large introductions of predatory mites Amblyseius barker (Acarina: Phytoseiidae)[J]. Entomophaga, 1988, 33(1): 33-42. [105] Hoy C W, Glenister C S. Releasing Amblyseius spp. (Acarina: Phytoseiidae) to control Thrips tabaci (Thysanoptera: Thripidae) on cabbage[J]. Entomophaga, 1991, 36(4): 561-573. [106] 王恩东, 徐学农, 吴圣勇. 释放巴氏新小绥螨对温室大棚茄子上西花蓟马及东亚小花蝽数量的影响[J]. 植物保护, 2010, 36(5): 101-104. [107] Weintraub P G, Palevsky E. Evaluation of the predatory mite, Neoseiulus californicus, for spider mite control on greenhouse sweet pepper under hot arid field conditions[J]. Experimental and Applied Acarology, 2008, 45: 29-37. [108] Wimmer D, Hoffmann D, Schausberger P. Prey suitability of western flower thrips, Frankliniella occidentalis and onionthrips, Thrips tabaci, for the predatory mite Amblyseius swirskii[J]. Biocontrol Science Technology, 2008, 18: 541-550. [109] Buitenhuis R, Shipp L, Scott-Dupree C. Intra-guild vs extra-guild prey: effect on predator fitness and preference of Amblyseius swirskii (Athias-Henriot) and Neoseiulus cucumeris (Oudemans) (Acari: Phytoseiidae)[J]. Bulletin of Entomological Research, 2010, 100: 167-173. [110] Nomikou M, Janssen A, Schraag R, et al. Vulnerability of Bemisia tabaci immatures to phytoseiid predators: consequences for oviposition and influence of alternative food[J]. Entomologia Experimentalis et Applicata, 2004, 110: 95-102. [111] 陈军. 巴氏钝绥螨棚室应用技术研究[D]. 合肥: 安徽农业大学, 2012. [112] 张艳璇, 林坚贞, 张公前, 等. 胡瓜钝绥螨控制大棚甜椒烟粉虱的研究[J]. 福建农业学报, 2011, 26(1): 91-97. [113] 张艳璇, 张公前, 季洁, 等.胡瓜钝绥螨对日光大棚茄子上烟粉虱的控制作用[J]. 生物安全学报, 2011, 20(2): 132-140. [114] 王恩东, 吴圣勇, 吕佳乐, 等. 释放巴氏新小绥螨防治温室大棚番茄上的烟粉虱[J]. 植物保护, 2020, 46(4): 234-238. [115] Barbosa M F C, Marcelo P, Elaine C C P. Functional response of Amblyseius tamatavensis Blommers (Mesostigmata: Phytoseiidae) to eggs of Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) on five host plants[J]. Biological Control, 2019, 138: 104030. [116] Chambers R J, Wright E M, Lind R J. Biological control of glasshouse sciarid flies (Bradysia spp.) with the predatory mite, Hypoaspis miles, on cyclamen and poinsettia[J]. Biocontrol Science Technology, 1993, 3: 285-293. [117] Ydergaard S, Enkegaad A, Brodsgaard H F. The predatory mite Hypoaspis miles: temperature dependent life table characteristics on a diet of sciarid larvae, Bradysia paupera and B. tritici[J]. Entomologia Experimentalis et Applicata, 1997, 85: 177-187. [118] Wright E M, Chambers R J. The biology of the predatory mite Hypoaspis miles (Acari: Laelapidae), a potential biological control agent of Bradysia paupera (Dipt.: Sciaridae)[J]. Entomophaga, 1994, 39: 225-235. [119] 周万琴, 谢辉, 李敦松, 等. 巴氏新小绥螨对相似穿孔线虫的捕食作用及在植物上的分布[J]. 西南师范大学学报(自然科学版), 2016, 41(1): 62-65. [120] 徐学农, 王恩东, 王伯明. 温室大棚蔬菜上蓟马立体防控技术[M]//农业部科技教育司主编, 农业轻简化实用技术汇编. 北京: 中国农业出版社, 2012, 147-148. [121] 谷培云, 马永军, 焦雪霞, 等. 释放捕食螨对彩椒上蓟马防效的初步评价[J]. 生物技术进展, 2013, 3(1): 54-56. [122] Maniania N K, Sunday E, Miriam K, et al. The effect of combined application of the entomopathogenic fungus Metarhizium anisopliae and the release of predatory mite Phytoseiulus longipes for the control of the spider mite Tetranychus evansi on tomato[J]. Crop Protection, 2016, 90: 49-53. [123] Liu J F, Zhang Z Q, Beggs J, et al. Influence of pathogenic fungi on the life history and predation rate of mites attacking a psyllid pest[J]. Ecotoxicology and Environmental Safety, 2019, 183: 109585. [124] Wu S Y, Gao Y L, Xu X N, et al. Evaluation of Stratiolaelaos scimitus and Neoseiulus barkeri for biological control of thrips on greenhouse cucumbers [J]. Biocontrol Science and Technology, 2014, 24: 1110-1121. [125] Wu S Y, Gao Y L, Zhang Y P, et al. An entomopathogenic strain of Beauveria bassiana against Frankliniella occidentalis with no detrimental effect on the predatory mite Neoseiulus barkeri: evidence from laboratory bioassay and scanning electron microscopic observation[J]. PLoS ONE, 2014, 9(1): 1-7. [126] Wu S Y, Gao Y L, Xu X N, et al. Compatibility of Beauveria bassiana with Neoseiulus barkeri for control of Frankliniella occidentalis[J]. Journal of Integrative Agriculture, 2015, 14(1): 98-105. [127] Wu S Y, Guo J F, Xing Z L, et al. Comparison of mechanical properties for mite cuticles in understanding passive defense of phytoseiid mite against fungal infection[J]. Materials an Design, 2018, 140: 241-248. [128] Wu S Y, GaoY L, Xu X N, et al. Feeding on Beauveria bassiana treated Frankliniella occidentalis causes negative effects on the predatory mite Neoseiulus barkeri[J]. Scientific Reports, 2015, 5: e12033. [129] Canassa F, Tall S, Moral R A, et al. Effects of bean seed treatment by the entomopathogenic fungi Metarhizium robertsii and Beauveria bassiana on plant growth, spider mite populations and behavior of predatory mites[J]. Biological Control, 2019, 132: 199-208. [130] 宫亚军, 石宝才, 王泽华, 等. 新型杀螨剂一联苯肼酯对二斑叶螨的毒力测定及田间防效[J]. 农药, 2013, 52(3): 225-227. [131] Van Leeuwen T, Vanholme B, Van Pottelberge S, et al. Mitochondrial heteroplasmy and the evolution of insecticide resistance: non-mendelian inheritance in action[J]. Proceedings of the National Academy of Sciences, 2008, 105(16): 5980-5985. [132] Van Leeuwen T, Vontas J, Tsagkarakou A, et al. Acaricide resistance mechanisms in the two-spotted spider mite Tetranychus urticae and other important Acari: a review[J]. Insect Biochemistry and Molecular Biology, 2010, 40: 563-572. [133] Amor F, Medina P, Bengochea P, et al. Effect of emamectin benzoate under semi-field and field conditions on key predatory biological control agents used in vegetable greenhouses[J]. Biocontrol Science and Technology, 2012, 22(2): 219-232. [134] Alzoubi S, Çobanoğlu S. Bioassay of some pesticides on two-spotted spider mite Tetranychus urticae Koch and predatory mite Phytoseiulus persimilis A-H. International Journal of Acarology, 2010, 36(3): 267-272. [135] Hany K, Abd-Elhady, Hany M M H. Selective toxicity of three acaricides to the two-spotted spider mite Tetranychus urticae and predatory mite Phytoseuilus persimilis in apple orchards[J]. Journal of Entomology, 2011, 8: 574-580. [136] 吕佳乐. 智利小植绥螨-加州新小绥螨与二斑叶螨共存时的种群动态及互作[R]. 博士后研究工作报告, 2016. [137] 朱志同. 两种捕食螨对辣椒茶黄螨的协同防控研究[D]. 泰安: 山东农业大学, 2024. [138] Barghout M, Sayed S, El-Saiedy E S. Efficacy of phytoseiid mites and pesticides to control Bemisia tabaci, Thrips tabaci and Tetranychus urticae on Capsicum annuum[J]. Persian Journal of Acarology, 2022, 11: 497-513. [139] Dogramaci M, Arthurs S P, Chen J J, et al. Management of chilli thrips Scirtothrips dorsalis (Thysanoptera: Thripidae) on peppers by Amblyseius swirskii (Acari: Phytoseiidae) and Orius insidiosus (Hemiptera: Anthocoridae) [J]. Biological Control, 2011, 59(3): 340-347. [140] 侯峥嵘, 孙贝贝, 李金萍, 等. 混合释放天敌对大棚辣椒蓟马的防控效果[J]. 中国植保导刊, 2022, 42(9): 57-61. [141] Calvo F J, Blockmans K, Belda J E. Development of a biological control–based integrated pest management method for Bemisia tabaci for protected sweet pepper crops[J]. Entomologia Experimentalis et Applciata,, 2009, 133: 9-18. [142] Lopez L, Liburd O E. Can the introduction of companion plants increase biological control services of key pests in organic squash?[J] Entomologia Experimentalis et Applicata, 2022, 170: 402-418. [143] Bonsignore C P, van Baaren J. Complex habitats boost predator co-occurrence, enhancing pest control in sweet pepper greenhouses[J]. Horticulturae, 2024, 10: 614. [144] Kumar V, McKenzie C L, Avery P B, et al. Suitability of ornamental pepper cultivars as banker plants for the establishment of predatory mite Amblyseius swirskii in controlled production[J]. Sustainability, 2020, 12: 8031. [145] Meijer D, der Vleut J V, Weldegergis B T, et al. Effects of far-red light on tritrophic interactions between the two-spotted spider mite (Tetranychus urticae) and the predatory mite Phytoseiulus persimilis on tomato[J]. Pest Management Science, 2023, 79: 1820-1828. |
| [1] | XU Xuenonng, XIE Yonghui, WANG Endong, LIU Zhenlin, LI Hongming, LIN Dekai, ZHANG Bo. Preliminary Investigation of Phytoseiid Mites in and Around Kunming City [J]. Chinese Journal of Biological Control, 2025, 41(6): 1317-1332. |
| [2] | WANG Yanping, ZHANG Kai, JIA Jingli, ZHENG Yubao, JIA Lijun, ZHAO Jingtao, WANG Fenglu, LI Qian, MAO Haiyan, ZHANG Chong, YANG Yu, WU Yuanhua. Identification of Biocontrol Agent Bacillus velezensis Apcs-1 against Potato Common Scab and Its Characteristics of Growth Promotion and Disease Control [J]. Chinese Journal of Biological Control, 2025, 41(6): 1390-1402. |
| [3] | AN Qi, XIAO Junbo, Clement Nzabanita, SHENG Xueyuan, WANG Shuangchao, GUO Lihua, ZHAO Yan. Biological Control of Fusarium acuminatum G3-23 on Plant Pathogenic Fungi [J]. Chinese Journal of Biological Control, 2025, 41(6): 1452-1461. |
| [4] | REN Naipeng, LIU Jielin, HAO Ningke, CAO Yang, LI GuoLiang, LIU Xiangping. Control Effect of Actinomucor elegans AD-G14 on Alfalfa Fusarium Root Rot [J]. Chinese Journal of Biological Control, 2025, 41(6): 1462-1472. |
| [5] | LI Hanyang, DANG Yingqiao, CAO Liangming, WANG Xiaoyi. Preliminary Studies on Feeding Preference and Natural Enemy Attraction of Fall Webworm from Delaware [J]. Chinese Journal of Biological Control, 2025, 41(5): 998-1007. |
| [6] | WANG Zhiyuan, JIN Mengjun, FENG Zhonghong, YANG Chengde, SHI Yuan. Development of Bacillus subtilis 262XY2′ Granules for Biocontrol of Corn Stalk Rot [J]. Chinese Journal of Biological Control, 2025, 41(5): 1133-1140. |
| [7] | BAI Zhenxu, JI Tiancen, CHEN Lusheng, ZHANG Weikang, CAO Yurong, ZHU Caihua, DING Chu, CHEN Yong, LU Mingchang, WANG Wenli, CHEN Jie. Application of Trichoderma Bioactive Metabolites-based Composite Formulation in Controlling of Rice Pests and Diseases [J]. Chinese Journal of Biological Control, 2025, 41(5): 1166-1178. |
| [8] | YIN Shunli, MAO Jun, WANG Jielin, FENG Chencheng, DING Yue, SU Yuan, BAI Tingting. Screening and Identification of Biocontrol Fungi against Fusarium Wilt of Banana and Evaluation of Their Control Effect [J]. Chinese Journal of Biological Control, 2025, 41(5): 1188-1199. |
| [9] | HAN Shunda, CHEN Junjie, CHEN Wanbin, ZHANG Maosen, ZHANG Lisheng. Biological Control Resources of Gynaephora spp., and Their Application Status [J]. Chinese Journal of Biological Control, 2025, 41(5): 1256-1262. |
| [10] | CHEN Feifei, XU Shiyi, KONG Jiahui, MIN Ziquan, WANG Yahui, PAN Yuemin. Review of Plant Beneficial Microorganisms and Their Biocontrol Mechanism in Controlling Plant Disease [J]. Chinese Journal of Biological Control, 2025, 41(5): 1263-1275. |
| [11] | CAO Xizhou, YANG Jie, TAN Guanlin, YANG Guixiang, LAN Pinxiu, LI Fan. Advances in the Application of Microbial Resources for Plant Viral Disease Control and Their Antiviral Mechanisms [J]. Chinese Journal of Biological Control, 2025, 41(5): 1276-1292. |
| [12] | SONG Liuxiao, XU Weihong, XU Jingyang, CONG Yuqiu, BEN Haiyan, LI Bing, WU Huihui, ZOU Deyu. Optimization and Evaluation of Artificial Diet with Insect Ingredients for Arma chinensis [J]. Chinese Journal of Biological Control, 2025, 41(4): 769-779. |
| [13] | WU Mengjing, HUANG Peng, ZHANG Jie, ZHENG Luping, YU Deyi, LIN Sheng, WU Zujian, YAO Jinai. Identification of Bacillus velezensis BV-3 and Its Control Effect on Southern Corn Leaf Blight [J]. Chinese Journal of Biological Control, 2025, 41(4): 887-894. |
| [14] | ZHANG Chi, JIN Bingkun, LI Jingwen, DU Yejuan, HUANG Jiafeng, ZHANG Xuekun, LIU Zheng. Screening of Antagonistic Bacteria and Its Control Effect on Cotton Stiff Bolls [J]. Chinese Journal of Biological Control, 2025, 41(4): 895-905. |
| [15] | FAN Wanwan, WANG Zhenyu, ZHANG Haiyan, CUI Xiaowei, FENG Lanlan, GAO Meng. Isolation, Identification and Biological Control of Antagonistic Bacteria against Peanut Southern Blight [J]. Chinese Journal of Biological Control, 2025, 41(4): 906-915. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||