Chinese Journal of Biological Control ›› 2026, Vol. 42 ›› Issue (1): 82-95.DOI: 10.16409/j.cnki.2095-039x.2026.02.009
• Special Topic: Synergistic Approaches and Efficacy Evaluation of Biocontrol Agents for Plant Disease Control • Previous Articles
ZHANG Yu, GU Xin, LIU Wenhui, BAI Yan, LI Siqi
Received:2025-07-30
Published:2026-02-11
CLC Number:
ZHANG Yu, GU Xin, LIU Wenhui, BAI Yan, LI Siqi. Control Effect of Trichoderma harzianum Combined with Organic Fertilizer and Biochar on Watermelon Fusarium Wilt[J]. Chinese Journal of Biological Control, 2026, 42(1): 82-95.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zgswfz.com.cn/EN/10.16409/j.cnki.2095-039x.2026.02.009
| [1] Guo S, Zhang J, Sun H, et al. The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions[J]. Nature Genetics, 2018, 45(1): 51-58. [2] 刘文革, 何楠, 赵胜杰, 等. 我国西瓜品种选育研究进展[J]. 中国瓜菜, 2016, 29(1): 1-7. [3] Zhang Z, Zhang J, Wang Y, et al. Molecular detection of Fusarium oxysporum f. sp. niveum and Mycosphaerella melonis in infected plant tissues and soil[J]. FEMS Microbiology Letters, 2005, 249(1): 39-47. [4] Martyn R D. Fusarium wilt of watermelon: 120 years of research[J]. Horticultural Reviews, 2014, 42: 349-442. [5] Pietro A D, Madrid M P, Caracuel Z, et al. Fusarium oxysporum: exploring the molecular arsenal of a vascular wilt fungus[J]. Molecular Plant Pathology, 2016, 4(5): 315-25. [6] Karki K, Grant J, da Silva A L B R, et al. Evaluation of pic-clor 60 choloropicrin pre-mixed with 1, 3 dicholoropropene and soil-applied fungicides for the Fusarium wilt management in watermelon[J]. Crop Protection, 2022, 154: 105894. [7] Liu L L, Zhou K S, Huang X Q, et al. Effects of reductive soil disinfestation during low-temperature stubble free period on the control of watermelon Fusarium wilt[J]. The Journal of Applied Ecology, 2021, 32(8): 2967-2974. [8] Jagre A, Singh D, Chaurasiya A, et al. Screening of various chickpea varieties against Fusarium oxysporum f. sp. ciceri under field conditions[J]. International Journal of Plant & Soil Science, 2022, 34(21): 612-618. [9] Norton J D, Boyhan G E, Smith D A, et al. 'AU-Sweet Scarlet' watermelon[J]. Hortscience, 2021, 30(2): 393-394. [10] Jiang C H, Yao X F, Mi D D, et al. Comparative transcriptome analysis reveals the biocontrol mechanism of Bacillus velezensis F21 against Fusarium wilt on watermelon[J]. Frontiers in Microbiology, 2019, 10: 652. [11] Zhang Y, Xiao J, Yang K, et al. Transcriptomic and metabonomic insights into the biocontrol mechanism of Trichoderma asperellum M45a against watermelon Fusarium wilt[J]. PLoS ONE, 2022, 17(8): e0272702. [12] Samuels Gary J. Trichoderma: systematics, the sexual state, and ecology[J]. Phytopathology, 2006, 96(2): 195-206. [13] Cummings N J, Ambrose A, Braithwaite M, et al. Diversity of root-endophytic Trichoderma from Malaysian Borneo[J]. Mycological Progress, 2016, 15: 1-14. [14] Huang X, Chen L, Ran W, et al. Trichoderma harzianum strain SQR-T37 and its bio-organic fertilizer could control Rhizoctonia solani damping-off disease in cucumber seedlings mainly by the mycoparasitism[J]. Applied Microbiology and Biotechnology, 2011, 91: 741-755. [15] Poveda J. Trichoderma as biocontrol agent against pests: New uses for a mycoparasite[J]. Biological Control, 2021, 159: 104634. [16] Harman G E. Trichoderma—not just for biocontrol anymore[J]. Phytoparasitica, 2011, 39: 103-108. [17] Lopes F A C, Steindorff A S, Geraldine A M, et al. Biochemical and metabolic profiles of Trichoderma strains isolated from common bean crops in the Brazilian Cerrado, and potential antagonism against Sclerotinia sclerotiorum[J]. Fungal Biology, 2012, 116(7): 815-824. [18] 孟素玲, 王媛, 顾欣, 等. 西瓜枯萎病菌和哈茨木霉的GFP标记及根部动态定殖比较[J]. 西北农业学报, 2024, 33(2): 355-363. [19] Ali H Z, Aboud H M, Dheyab N S, et al. Effects of pH and ECW on growth and sporulation of indigenous Tricoderma spp.[J]. International Journal of Phytopathology, 2015, 4(1): 15-20. [20] Dobbs C G, Hinson W H. A widespread fungistasis in soils[J]. Nature, 1953, 172: 197-199. [21]吴连举, 杨依军, 武侠, 等. 利用土壤拮抗性微生物防治人参锈腐病[J]. 中国生物防治, 1999, 15(4): 166-168. [22] Sanjay R, Ponmurugan P, Baby U I. Evaluation of fungicides and biocontrol agents against grey blight disease of tea in the field[J]. Crop Protection, 2008, 27(3-5): 689-694. [23] Liu H, Duan W, Liu C, et al. Spore production in the solid-state fermentation of stevia residue by Trichoderma guizhouense and its effects on corn growth[J]. Journal of Integrative Agriculture, 2021, 20(5): 1147-1156. [24] Blok C, Diaz A, Oud N, et al. Biochar as a carrier: Trichoderma harzianum on biochar to promote disease suppression in strawberry[R]//Wageningen University & Research, BU Greenhouse Horticulture, 2019. [25] Bevacqua R F, Mellano V J. Cumulative effects of sludge compost on crop yields and soil properties[J]. Communications in Soil Science and Plant Analysis, 1994, 25(3-4): 395-406. [26] Stolze M, Piorr A, Häring A M, et al. Environmental Impacts of Organic Farming in Europe[M]. Universität Hohenheim, Stuttgart-Hohenheim, 2000. [27] El Hassan S A, Gowen S R. Formulatio ‐ n and delivery of the bacterial antagonist Bacillus subtilis for management of lentil vascular wilt caused by Fusarium oxysporum f. sp. lentis[J]. Journal of Phytopathology, 2006, 154(3): 148-155. [28] Zhao Q, Dong C, Yang X, et al. Biocontrol of Fusarium wilt disease for Cucumis melo melon using bio-organic fertilizer[J]. Applied Soil Ecology, 2011, 47(1): 67-75. [29] Gupta G K, Gupta P K, Mondal M K. Experimental process parameters optimization and in-depth product characterizations for teak sawdust pyrolysis[J]. Waste Management, 2019, 87: 499-511. [30] Li C, Ahmed W, Li D, et al. Biochar suppresses bacterial wilt disease of flue-cured tobacco by improving soil health and functional diversity of rhizosphere microorganisms[J]. Applied Soil Ecology, 2022, 171: 104314. [31] Jaiswal A K, Frenkel O, Tsechansky L, et al. Immobilization and deactivation of pathogenic enzymes and toxic metabolites by biochar: a possible mechanism involved in soilborne disease suppression[J]. Soil Biology and Biochemistry, 2018, 121: 59-66. [32] Debode J, De Tender C, Cremelie P, et al. Trichoderma-inoculated miscanthus straw can replace peat in strawberry cultivation, with beneficial effects on disease control[J]. Frontiers in Plant Science, 2018, 9: 213. [33] Palansooriya K N, Wong J T F, Hashimoto Y, et al. Response of microbial communities to biochar-amended soils: a critical review[J]. Biochar, 2019, 1: 3-22. [34] 李红宇, 张巩亮, 范名宇, 等. 生物炭连续还田对苏打盐碱水稻土养分及真菌群落结构的影响[J]. 水土保持学报, 2020, 34(6): 345-351, 360. [35] Jaiswal A K, Elad Y, Cytryn E, et al Activating biochar by manipulating the bacterial and fungal microbiome through pre conditioning[J]. New ‐ Phytologist, 2018, 219(1): 363-377. [36] Freddo A, Cai C, Reid B J. Environmental contextualisation of potential toxic elements and polycyclic aromatic hydrocarbons in biochar[J]. Environmental Pollution, 2012, 171: 18-24. [37] 孙小涵, 田彦梅, 顾欣, 等. 一株生防木霉的鉴定及环境pH与对羟基苯甲酸对其防病效果的影响[J]. 西北农业学报, 2023, 32(1): 145-153. [38] Komada H. Development of a selective medium for quantitative isolation of Fusarium oxysporum from natural soil[J]. Review of Plant Protection Research, 1975, 8: 114-125 [39] Elad Y, Chet I, Henis Y. A selective medium for improving quantitative isolation of Trichoderma spp. from soil[J]. Phytoparasitica, 1981, 9(1): 59-67. [40] Hoagland D R, Arnon D I. The Water-Culture Method for Growing Plants without Soil (2nd edit)[M]. Circular, Bulletin-California Agricultural Experiment Station, 1950, 347. [41] Huan X, Wang X, Zou S, et al. Transcription factor ERF194 modulates the stress-related physiology to enhance drought tolerance of poplar[J].International Journal of Molecular Sciences, 2023, 24(1): 788. [42] Zhou L, Huan X, Zhao K, et al. PagMYB205 negatively affects poplar salt tolerance through reactive oxygen species scavenging and root vitality modulation[J]. International Journal of Molecular Sciences, 2023, 24(20): 15437. [43] 何梦园, 沈聪, 张俊华, 等. 连作对枸杞根区土壤理化性质、农药残留和微生物群落的影响[J]. 环境科学, 2024, 45(9): 5578-5590. [44] Zehra A, Aamir M, Dubey M K, et al. Enhanced protection of tomato against Fusarium wilt through biopriming with Trichoderma harzianum[J]. Journal of King Saud University-Science, 2023, 35(2): 102466. [45] Rhodes A H, Carlin A, Semple K T. Impact of black carbon in the extraction and mineralization of phenanthrene in soil[J]. Environmental Science & Technology, 2008, 42(3): 740-745. [46] Topoliantz S, Ponge J F, Ballof S. Manioc peel and charcoal: a potential organic amendment for sustainable soil fertility in the tropics[J]. Biology and Fertility of Soils, 2005, 41: 15-21. [47] Jaiswal A K, Elad Y, Paudel I, et al. Linking the belowground microbial composition, diversity and activity to soilborne disease suppression and growth promotion of tomato amended with biochar[J]. Scientific Reports, 2017, 7(1): 44382. [48] Lyu H, He Y, Tang J, et al. Effect of pyrolysis temperature on potential toxicity of biochar if applied to the environment[J]. Environmental Pollution, 2016, 218: 1-7. [49] Rajkovich S, Enders A, Hanley K, et al. Corn growth and nitrogen nutrition after additions of biochar with varying properties to a temperate soil[J]. Biology and Fertility of Soils, 2012, 48: 271-284. [50] Copley T R, Aliferis K A, Jabaji S. Maple bark biochar affects Rhizoctonia solani metabolism and increases damping-off severity[J]. Phytopathology, 2015, 105(10): 1334-1346. [51] Dai Z, Xiong X, Zhu H, et al. Association of biochar properties with changes in soil bacterial, fungal and fauna communities and nutrient cycling processes[J]. Biochar, 2021, 3: 239-254. [52] Novak J M, Busscher W J, Laird D L, et al. Impact of biochar amendment on fertility of a southeastern coastal plain soil[J]. Soil Science, 2009, 174(2): 105-112. [53] Figueiredo C C, Chagas J K M, da Silva J, et al. Short-term effects of a sewage sludge biochar amendment on total and available heavy metal content of a tropical soil[J]. Geoderma, 2019, 344: 31-39. [54] Yao Q, Liu J, Yu Z, et al. Three years of biochar amendment alters soil physiochemical properties and fungal community composition in a black soil of northeast China[J]. Soil Biology and Biochemistry, 2017, 110: 56-67. [55] 王玫, 徐少卓, 刘宇松, 等. 生物炭配施有机肥可改善土壤环境并减轻苹果连作障碍[J]. 植物营养与肥料学报, 2018, 24(1): 220-227. [56] Chintala R, Schumacher T E, McDonald L M, et al. Phosphorus sorption and availability from biochars and soil/biochar mixtures[J]. CLEAN–Soil, Air, Water, 2014, 42(5): 626-634. [57] Gaskin J W, Steiner C, Harris K, et al. Effect of low-temperature pyrolysis conditions on biochar for agricultural use[J]. Transactions of the ASABE, 2008, 51(6): 2061-2069. [58] Omondi M O, Xia X, Nahayo A, et al. Quantification of biochar effects on soil hydrological properties using meta-analysis of literature data[J]. Geoderma, 2016, 274: 28-34. [59] Cai A, Xu M, Wang B, et al. Manure acts as a better fertilizer for increasing crop yields than synthetic fertilizer does by improving soil fertility[J]. Soil and Tillage Research, 2019, 189: 168-175. [60] 郑佳舜, 胡钧铭, 韦翔华, 等. 绿肥压青对粉垄稻田土壤微生物量碳和有机碳累积矿化量的影响[J]. 中国生态农业学报, 2021, 29(4): 691-703. [61] Zwart D C, Kim S H. Biochar amendment increases resistance to stem lesions caused by Phytophthora spp. in tree seedlings[J]. HortScience, 2012, 47(12): 1736-1740. [62] 刘勇, 赖佳, 孙小芳, 等. 根际微生态调控白菜根肿病发生的机制研究进展[J]. 微生物学通报, 2024, 51(2): 381-401. [63] Kasozi G N, Zimmerman A R, Nkedi-Kizza P, et al. Catechol and humic acid sorption onto a range of laboratory-produced black carbons (biochars) [J]. Environmental Science & Technology, 2010, 44(16): 6189-6195. [64] 解国玲, 张智浩, 吴流通, 等. 生物炭配施微生物菌剂对白菜根肿病防控效果研究[J]. 西南农业学报, 2023, 36(1): 105-111. [65] Xiong W, Guo S, Jousset A, et al. Bio-fertilizer application induces soil suppressiveness against Fusarium wilt disease by reshaping the soil microbiome[J]. Soil Biology and Biochemistry, 2017, 114: 238-247. [66] Ogawa M, Okimori Y. Pioneering works in biochar research, Japan[J]. Soil Research, 2010, 48(7): 489-500. [67] 束秀玉. 施用生物炭对西瓜幼苗枯萎病的影响及其作用机制[J]. 河南农业科学, 2020, 49(11): 91-97. [68] Jeffery S, Verheijen F G A, van der Velde M, et al. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis[J]. Agriculture, Ecosystems & Environment, 2011, 144(1): 175-187. [69] Luo T, Min T, Ru S, et al. Response of cotton root growth and rhizosphere soil bacterial communities to the application of acid compost tea in calcareous soil[J]. Applied Soil Ecology, 2022, 177: 104523 [70] Luo X X, Liu G C, Xia Y, et al. Use of biochar-compost to improve properties and productivity of the degraded coastal soil in the Yellow River Delta, China[J]. Journal of Soils and Sediments, 2017, 17(3): 780-789. [71] Hoyos-Carvajal L, Orduz S, Bissett J. Growth stimulation in bean (Phaseolus vulgaris L.) by Trichoderma[J]. Biological Control, 2009, 51(3): 409-416. [72] Mazhabi M, Nemati H, Rouhani H, et al. How may Trichoderma application affect vegetative and qualitative traits in tulip "Darwin hybride" cultivar[J]. Journal of Biological and Environmental Sciences, 2011, 5(15). 177-182 [73] 刘耀臣, 王萍, 刘润进, 等. 丛枝菌根真菌和生物炭对连作西瓜土壤肥力的影响[J]. 微生物学通报, 2020, 47(11): 3811-3821. |
| [1] | WU Zifei, WANG Xingwen, LIN Shengnan, WANG Zhihui, WANG Ning, HE Tianming, SHI Yingwu, ZHAN Faqiang, YANG Rong, BAO Huifang. Effect of Bio-control Bacterial Combined with Organic Fertilizer on Pear Fire Blight and Its Influences on Soil Microbial Diversity [J]. Chinese Journal of Biological Control, 2026, 42(1): 72-81. |
| [2] | LI Hongmei, WEI Yanli, YANG Kai, HU Jindong, LI Yang, ZHAO Zhongjuan, LI Jishun, YANG Jianwen. Isolation and Identification of Trichoderma harzianum TW21990 and Its Control Effect on Strawberry Root Rot [J]. Chinese Journal of Biological Control, 2025, 41(5): 1179-1187. |
| [3] | LIU Miaojiao, LIN Sukun, LIU Rong, ZHANG Junhui, LI Lin, YI Ting, XU Hanhong, ZENG Lingda. Biocontrol Effects of Bacillus amyloliquefaciens HN11 in Combination with Tobacco Waste Organic Fertilizers on Strawberry Root Rot [J]. Chinese Journal of Biological Control, 2025, 41(1): 143-155. |
| [4] | WANG Xigang, GUO Chengjin, JIAO Yang, ZHAO Pei, TIAN Jing, ZHANG Lirong, SHEN Ruiqing. Preparation of Wettable Powder Formulation of Trichoderma harzianum M-17 Chlamydospores and Its Field Control Effect on Potato Dry Rot [J]. Chinese Journal of Biological Control, 2024, 40(6): 1319-1330. |
| [5] | XIE Xiaolin, WANG Yong, CHEN Meng, ZHOU Lian, LI Chengjiang, LIU Yumin, ZHU Honghui. Optimization of Solid State Fermentation Conditions for Trichoderma harzianum BWT1.221 [J]. Chinese Journal of Biological Control, 2023, 39(5): 1224-1234. |
| [6] | CHEN Kai, SUI Lina, ZHAO Zhongjuan, LI Ling, HU Jindong, LI Jishun. Control Effect of Co-cultured Fermentation of Two Trichoderma Strains on Cucumber Fusarium Wilt [J]. Chinese Journal of Biological Control, 2022, 38(1): 108-114. |
| [7] | RAO Wenhua, ZHAN Yating, FANG Yun, YOU Yuxin, NIE Danyue, GUO Xueping, ZHANG Dingyang, GUAN Xiong, PAN Xiaohong. The Effect of Biochar on Anti-ultraviolet Ability of Cry1Ac Protein [J]. Chinese Journal Of Biological Control, 2020, 36(5): 714-720. |
| [8] | DU Chanjuan, YANG Di, PAN Lianfu, YE Yunfeng, ZHANG Jin, FU Gang. Bio-Fertilizer Optimization and Its Control Effect on Banana Fusarium Wilt [J]. Chinese Journal Of Biological Control, 2020, 36(3): 396-404. |
| [9] | ZHAO Weisong, LI Shezeng, LU Xiuyun, ZHANG Xiaoyun, WANG Peipei, GUO Ginggang, QI Yongzhi, DONG Lihong, MAO Xiaoxi, SU Zhenhe, MA Ping. Growth-promotion Effect of Bacillus amyloliquefaciens PHODB35 on Wheat Plant and Yield [J]. journal1, 2019, 35(3): 399-406. |
| [10] | LI Xinyue, WANG Lirong, LI Mei, WU Beilei, JIANG Xiliang. Function of a C2H2 Transcription Factor Tha09974 in Trichoderma harzianum [J]. journal1, 2019, 35(3): 407-415. |
| [11] | TIAN Cheng, ZHANG Yi, XIAO Jiling, ZHU Feiying, TANG Yanying, WEI Lin, LIANG Zhihuai. GFP -labeled Transformation of Trichoderma harzianum T2-16 and Its Biocontrol Characteristics [J]. journal1, 2019, 35(2): 247-254. |
| [12] | ZHU Feiying, TIAN Cheng, ZHANG Yi, XIAO Jiling, WEI Lin, LIANG Zhihuai. Effects of Different Fertilization Treatments on Soil Microbial Community Structure and the Occurrence of Watermelon Wilt [J]. journal1, 2018, 34(4): 589-597. |
| [13] | DING Jie, JIANG Xiliang, MEI Jie, SUN Qing, LI Mei. Functions of Thga3 Gene in Trichoderma harzianum Based on Transcriptome Analysis [J]. journal1, 2018, 34(1): 124-132. |
| [14] | WANG Lirong, JIANG Xiliang, ESTIFANOS Tsegaye, DING Jie, MA Jing, CHEN Xiaoli, LI Xinyue, LI Mei. Transcriptome Analysis of Trichoderma harzianum Th-33 under Copper Stress [J]. journal1, 2017, 33(1): 103-113. |
| [15] | CUI Shichun, YANG Xiufen, ZHENG Xingyun, YANG Huaiwen. Efficiency and Mechanism of Bio-organic Fertilizer in Suppressing Wheat Take-all Pathogen Gaeumannomyces graminis var. tritici [J]. journal1, 2016, 32(1): 112-118. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||