[1] Lin P, Cheng T C, Feng T S, et al. Interaction of Bombyx mori aminopeptidase N and cadherin-like protein with Bacillus thuringiensis Cry1Ac toxin[J]. Chinese Journal of Biotechnology, 2018, 34(11):1809-1822. [2] 丁学知. 苏云金杆菌4.0718菌株的cry杀虫基因和功能蛋白质组学研究[D]. 长沙:湖南农业大学, 2006. [3] 彭琦, 周子珊, 张杰. 苏云金芽胞杆菌杀虫晶体蛋白研究进展[J]. 中国生物防治学报, 2015, 31(5):712-722. [4] Irene K. Optimization of photobioreactor growth conditions for a cyanobacterium expressing mosquitocidal Bacillus thuringiensis cry proteins[J]. Journal of Biotechnology, 2013, 167(1):64-71. [5] 部建雯. 短波紫外线照射对樱桃番茄果实成熟的影响及机理研究[D]. 杭州:浙江大学, 2014. [6] Satinder K, Brar M, Verma R D, et al. Recent advances in downstream processing and formulations of Bacillus thuringiensis based biopesticides[J]. Process Biochemistry, 2006, (41):323-342. [7] 翟兴礼. 紫外线对4个Bt亚种活性的影响[J]. 河南农业科学, 2009(7):82-84. [8] Pusztai M, Fast P, Gringorten L, et al. The mechanism of sunlight-mediated inactivation of Bacillus thuringiensis crystals[J]. Biochemical Journal, 1991, 273(1):43-47. [9] 张小娟. Bt高抗紫外突变株的筛选及其漂浮缓释剂分析优化[D]. 福州:福建农林大学, 2014. [10] 双龙. 苏云金杆菌及其微胶囊剂对落叶松毛虫的毒力及抗紫外能力[D]. 呼和浩特:内蒙古农业大学, 2010. [11] Lehmann J, Rillig M C, Thies J, et al. Biochar effects on soil biota-A review[J]. Soil Biology and Biochemistry, 2011, 43(9):1812-1836. [12] Wang J, Liao Z W, Ifthikar J. One-step preparation and application of magnetic sludge-derived biochar on acid orange 7 removal via both adsorption and persulfate based oxidation[J]. RSC Advances, 2017, 7:18696-18706. [13] Rao W H, Zhan Y T, Chen S L, et al. Flowerlike Mg(OH)2 cross-nanosheets for controlling Cry1Ac protein loss:Evaluation of insecticidal activity and biosecurity[J]. Journal of Agricultural and Food Chemistry, 2018, 66:3651-3657. [14] Pan X H, Xu Z Y, Zheng Y L, et al. The adsorption features between insecticidal crystal protein and nano-Mg(OH)2[J]. Royal Society Open Science, 2017, 4(12):170883-170892. [15] 史月月, 单锐, 袁浩然, 等. 改性稻壳生物炭对水溶液中甲基橙的吸附效果与机制[J]. 环境科学, 2019, 40(6):1-16. [16] Tsai W T, Liu S C, Chen H R, et al. Textural and chemical properties of swine-manure-derived biochar pertinent to its potential use as a soil amendment[J]. Chemosphere, 2012, 89(2):198-203. [17] Atiyeh R M, Arancon N Q, Edwards C A, et al. The influence of earthworm-processed pig manure on the growth and productivity of marigolds[J]. Bioresource Technology, 2002, 81(2):103-108. [18] Mohan D, Charles U, Puttman J, et al. Sorption of arsenic, cadmium, and lead by chars produced from fast pyrolysis of wood and bark during bio-oil production[J]. Journal of Colloid and Interface Science, 2007, 310(1):57-73. [19] 吴林. 小麦秸秆生物炭对典型药用活性化合物的吸附机制研究[D]. 北京:中国地质大学, 2018. [20] Shi S, Yang J, Liang S, et al. Enhanced Cr(VI) removal from acidic solutions using biochar modified by Fe3O4@SiO2-NH2 particles[J]. Science of the Total Environment, 2018, 628-629(1):499-508. [21] Ferjani A, Jeguirim M, Jellali S, et al. The use of exhausted grape marc to produce biofuels and biofertilizers effect of pyrolysis temperatures on biochars properties[J]. Renewable & Sustainable Energy Reviews, 2019, 107(6):425-433. [22] Ndao A, Kumar L R, Tyagi R D, et al. Biopesticide and formulation processes based on starch industrial wastewater fortified with soybean medium[J]. Journal of Environmental Science and Health Part B, 2019, 55(2):1-12. [23] Yu X Y, Mu C L, Gu C, et al. Impact of woodchip biochar amendment on the sorption and dissipation of pesticide acetamiprid in agricultural soils[J]. Chemosphere, 2011, 85(8):1284-1289. [24] Sellaoui L, Lima E C, Dotto G L, et al. Adsorption of amoxicillin and paracetamol on modified activated carbons:Equilibrium and positional entropy studies[J]. Journal of Molecular Liquids, 2017, 234:375-381. [25] 王雨欣, 杨鸿. 不同原料与制备温度对生物炭应用的影响[J]. 环境与发展, 2019, 31(2):131-133. [26] 周婷, 周根娣, 苗苗. 生物炭对土壤重金属吸附机理研究进展[J]. 杭州师范大学学报(自然科学版), 2018, 17(4):404-410. [27] Pan X H, Xu Z Y, Li L, et al. Adsorption of insecticidal Crystal protein Cry11Aa onto nano-Mg(OH)2:Effects on bioactivity and anti-ultraviolet ability[J]. Journal of Agricultural and Food Chemistry, 2017, 65:9428-9434. [28] Zhou X Y, Li H, Liu Y M, et al. Improvement of stability of insecticidal proteins from Bacillus thuringiensis against UV-irradiation by adsorption on sepiolite[J]. Adsorption Science & Technology, 2018, 36(5-6):1233-1245. [29] 李飞跃, 桂向阳, 许吉宏, 等. 生物炭中溶解性有机质的光谱分析[J]. 光谱学与光谱分析, 2019, 39(11):3475-3481. [30] 王文军, 钱传范. 紫外线对Bt伴孢晶体的损伤和腐植酸的保护作用[J]. 植物保护学报, 2001, 28(1):49-54. [31] Kaiser D, Bacher S, Mène-Saffrané L, et al. Efficiency of natural substances to protect Beauveria bassiana conidia from UV radiation.[J]. Pest Management Science, 2019, 75:556-563. |