[1] Canard M, Séméria Y, New T R. Biology of Chrysopidae[M]. Springer:Netherlands, 1984. [2] Tsukaguchi S. Descriptions of the larvae of Chrysopa Leach (Neuroptera,Chrysopidae) of Japan[J]. Kontyu, Tokyo, 1978, 46:99-122. [3] Tauber M J, Tauber C A. Insect seasonality:Diapause maintenance,termination and postdiapause development[J]. Annual Review of Entomology,1976, 21:81-107. [4] Dank H V. Insect dormancy:an ecological perspective[M]//Biological Survey of Canada, Ottawa:Biological Survey of Canada, 1987, 1-433. [5] Denlinger D L. Relationship between cold hardiness and diapause[M]//Lee Jr. R E, Denlinge D L, eds. Insects at Low Temperature. New York:Chapman and Hall, 1991, 174-198. [6] Denlinger D L, Yocum G D, Rinehart J P. Hormonal control of diapause-10[J]. Insect Endocrinology, 2012, 8:430-463. [7] 李玉艳, 张礼生, 陈红印. 茧蜂滞育的研究进展[J]. 昆虫学报, 2010, 53(10):1167-1178. [8] 张礼生, 陈红印, 王孟卿, 等. 寄生蜂的滞育研究进展[J]. 中国生物防治学报, 2014, 30(2):149-164. [9] Li Y Y, Wang M Z, Gao F, et al. Exploiting diapause and cold tolerance to enhance the use of the green lacewing Chrysopa formosa for biological control[J]. Biological Control, 2018, 127:116-126. [10] Hahn D A, Denlinger D L. Meeting the energetic demands of insect diapause:nutrient storage and utilization[J]. Journal of Insect Physiology, 2007, 53(8):760-773. [11] Denlinger D L. Regulation of diapause[J]. Annual Review of Entomology, 2001, 47(1):93-122. [12] Koštal V. Eco-physiological phases of insect diapause[J]. Journal of Insect Physiology, 2006, 52(2):113-127. [13] Lee R E Jr. A primer on insect cold-tolerance[M]//Denlinger D L, Lee R E Jr, eds. Low Temperature Biology of Insects. Cambridge:Cambridge University Press, 2010, 3-35. [14] Hahn D A, Denlinger D L. Energetics of insect diapause[J]. Annual Review of Entomology, 2011, 56:103-121. [15] Sonobe H, Okada Y. Studies on the embryonic diapause of the pnd mutant of the silkworm, Bombyx mori[J]. Wilhelm Rouxs Archives of Developmental Biology, 1984, 193(6):414-417. [16] Heydari M, Izadi H. Effects of seasonal acclimation on cold tolerance and biochemical status of the carob moth, Ectomyelois ceratoniae Zeller, last instar larvae[J]. Bulletin of Entomological Research, 2014, 104(5):592-600. [17] Li YY, Zhang L S, Zhang Q R, et al. Host diapause status and host diets augmented with cryoprotectants enhance cold hardiness in the parasitoid Nasonia vitripennis[J]. Journal of Insect Physiology, 2014, 70:8-14. [18] Teets N M, Denlinger D L. Physiological mechanisms of seasonal and rapidcold hardening in insects[J]. Physiological Entomology, 2013, 38(2):105-116. [19] Mohammadzadeh M, Borzoui E, Izadi H, et al. Physiological and biochemical differences in diapausing and nondiapausing larvae of Eurytoma plotnikovi (Hymenoptera:Eurytomidae)[J]. Environmental Entomology, 2017, 46(6):1424-1431. [20] 张顺益, 秦华伟, 任凤山, 等. 桃小食心虫滞育过程中5种代谢酶活力变化[J]. 山东农业科学, 2015(6):97-100. [21] 王洪亮, 仵均祥, 王丙丽. 麦红吸浆虫滞育期间海藻糖酶和山梨醇脱氢酶活性的变化[J]. 西北农林科技大学学报(自然科学版), 2006, 34(8):139-142. [22] Turunen S, Chippendale G M. Esterase and lipase activity in the midgut of Diatraea grandiosella:digestive functions and distribution[J]. Insect Biochemistry, 1977, 7(1):67-71. [23] Koštal V, Tamura M, Tollarova M, et al. Enzymatic capacity for accumulation of polyol cryoprotectants changes during diapause development in the adult red firebug, Pyrrhocoris apterus[J]. Physiological Entomology, 2010, 29(4):344-355. [24] Robich R M, Denlinger D L. Diapause in the mosquito Culex pipiens evokes a metabolic switch from blood feeding to sugar gluttony[J]. Proceedings of the National Academy of Sciences, 2005, 102(44):15912-15917. [25] Dmochowska S K, Fliszkiewicz M, Giejdasz K, et al. The antioxidant system in diapausing and active red mason bee Osmia bicornis[J]. Physiological Entomology, 2015, 40(1):82-89. [26] Zhao L W, Xu X R, Xu Z, et al. Diapause induction, color change, and cold tolerance physiology of the diapausing larvae of the Chouioia cunea (Hymenoptera:Eulophidae)[J]. Journal of Insect Science, 2014, 14(1):294-294. [27] Chao H, Meng Q K, Yang X B, et al. Carbohydrate metabolism and antioxidant defense during diapause development in larvae of oriental fruit moth (Grapholita molesta) at low temperature[J]. International Journal of Agriculture and Biology, 2013, 15(1):101-106. [28] 郝友进, 郭强, 陈斌. 葱蝇非滞育、夏滞育和冬滞育蛹体内抗氧化酶活性的比较分析[J]. 昆虫学报, 2018, 61(3):3-10. [29] Canard M, Volkovich T A. Outlines of lacewing development[M]//Whittington A E, McEwen P K, New T R, eds. Lacewings in the Crop Environment. Cambridge:Cambridge University Press, 2001, 130-154. [30] 陈珍珍, 赵楠, 印象初, 等. 中华通草蛉自然越冬成虫在两种光周期下滞育解除过程中的生理生化变化[J]. 昆虫学报, 2013, 56(2):120-130. [31] 陈珍珍, 宋暖, 郭亚楠, 等. 中华通草蛉自然越冬成虫在长、短光周期下滞育解除中体内相关酶活力变化[J]. 昆虫学报, 2013, 56(9):982-988. [32] 韩艳华. 脂肪酸合酶及酰基-CoAΔ11去饱和酶在七星瓢虫滞育中的功能研究[D]. 北京:中国农业科学院, 2018. [33] Li Y Y, Zhang L S, Chen H Y, et al. Shifts in metabolomic profiles of the parasitoid Nasonia vitripennis associated with elevated cold tolerance induced by the parasitoid's diapause, host diapause and host diet augmented with proline[J]. Insect Biochemistry and Molecular Biology, 2015, 63:34-46. [34] Michaud M R, Denlinger D L. Shifts in the carbohydrate, polyol, and amino acid pools during rapid cold-hardening and diapause-associated cold-hardening in flesh flies (Sarcophaga crassipalpis):a metabolomic comparison[J]. Journal of Comparative Physiology B, 2007, 177(7):753-763. [35] Colinet H, Renault D, Charoy G B, et al. Metabolic and proteomic profiling of diapause in the aphid parasitoid Praon volucre[J]. PLoS ONE, 2012, 7(2):e32606. [36] 任小云, 张礼生, 齐晓阳, 等. 滞育七星瓢虫的代谢适应与抗寒性评价[J]. 环境昆虫学报, 2015, 37(6):1195-1202. [37] 李玉艳. 烟蚜茧蜂滞育诱导的温光周期反应及滞育生理研究[D]. 北京:中国农业科学院, 2011. [38] 于令媛, 时爱菊, 郑方强, 等. 大草蛉预蛹耐寒性的季节性变化[J]. 中国农业科学, 2012, 45(9):1723-1730. [39] Denlinger D L, Yocum G D, Rinehart J P. Hormonal control of diapause[M]//Gilert L I, Iatrou K, Glii S, eds. Comprehensive Insect Molecular Science. Amsterdam:Elsevier, 2005, 615-650. [40] 李丹, 龙治任, 王越, 等. 麦红吸浆虫滞育发生和解除过程中总脂和甘油三酯含量变化[J]. 昆虫学报, 2014, 57(5):509-514. [41] Zhai Y F, Lin Q C, Zhang J P, et al. Adult reproductive diapause in Drosophila suzukii females[J]. Journal of Pest Science, 2016, 89(3):679-688. [42] Feofilova E P, Usov A I, Mysyakina I S, et al. Trehalose:chemical structure, biological functions, and practical application[J]. Microbiology, 2014, 83(3):184-194. [43] 李玉艳. 滞育诱导和营养传递对丽蝇蛹集金小蜂耐寒性的影响及其分子机制[J]. 北京:中国农业科学院, 2015. [44] Shukla E, Thorat L J, Nath B B, et al. Insect trehalase:physiological significance and potential applications[J]. Glycobiology, 2015, 25(4):357-367. [45] Storey K B, Storey J M. Biochemistry of cryoprotectants[M]//Lee R E Jr, Denlinger D L, eds. Insects at Low Temperature. New York:Chapman and Hall, 1991, 64-93. [46] Michaud M R, Denlinger D L. Shifts in the carbohydrate, polyol, and amino acid pools during rapid cold-hardening and diapause-associated cold-hardening in flesh flies (Sarcophaga crassipalpis):a metabolomic comparison[J]. Journal of Comparative Physiology B, 2007, 177(7):753-763. [47] Rajarapu S P, Mamidala P, Herms D A, et al. Antioxidant genes of the emerald ash borer (Agrilus planipennis):Gene characterization and expression profiles[J]. Journal of Insect Physiology, 2011, 57(6):819-824. [48] Storey K B, Storey J M. Oxygen:stress and adaptation in cold-hardy insects[M]//Denlinger D L, Lee R E Jr, eds. Low Temperature Biology of Insects. Cambridge:Cambridge University Press, 2010,141-165. [49] Cheolho S, Denlinger D L. Catalase and superoxide dismutase-2 enhance survival and protect ovaries during overwintering diapause in the mosquito Culex pipiens[J]. Journal of Insect Physiology, 2011, 57(5):628-634. [50] Sim C, Kang D S, Kim S, et al. Identification of FOXO targets that generate diverse features of the diapause phenotype in the mosquito Culex pipiens[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112:3811-3816. |