[1] 张礼生, 陈红印, 王孟卿. 天敌昆虫的滞育研究及其应用[A]//陈万权主编. 粮食安全与植保科技创新[C]. 北京:中国农业科技出版社, 2009, 548-552. [2] 张礼生, 陈红印, 李保平. 天敌昆虫的扩繁与应用[M]. 北京:中国农业科学技术出版社, 2014. [3] 王伟, 张礼生, 陈红印, 等. 北京地区七星瓢虫滞育诱导的温光效应[J]. 中国生物防治学报, 2013, 29(1):24-30. [4] 任小云, 张礼生, 齐晓阳, 等. 滞育七星瓢虫的代谢适应与抗寒性评价[J]. 环境昆虫学报, 2015, 37(6):1195-1202. [5] Qi X Y, Zhang L S, Han Y H, et al. De novo transcriptome sequencing and analysis of Coccinella septempunctata L. in non-diapause, diapause and diapause terminated states to identify diapause associated genes[J]. BMC Genomics, 2015, 16:1086-1102. [6] 任小云. 七星瓢虫滞育的代谢适应及脂代谢的转录组学机理研究[M]. 北京:中国农业科学院, 2015. [7] Cuvillier O. Sphingosine in apoptosis signaling[J]. Biochimica et Biophysica Acta, 2002, 1585(2-3):153. [8] Hannun Y A, Luberto C. Ceramide in the eukaryotic stress response[J]. Trends in Cell Biology, 2000, 10(2):73-80. [9] Hannun Y A, Obeid L M. The ceramide-centric universe of lipid-mediated cell regulation:stress encounters of the lipid kind[J]. Journal of Biological Chemistry, 2002, 277(29):25847-25850. [10] Michaud M R, Denlinger D L. Oleic acid is elevated in cell membranes during rapid cold-hardening and pupal diapause in the flesh fly, Sarcophaga crassipalpis[J]. Journal of Insect Physiology, 2006, 52(10):1073-1082. [11] 张羽航, 鲍时翔, 王延平, 等. 脂肪酸脱饱和的应用进展[J]. 生物工程进展, 2001, 21(2):46-49. [12] 张羽航, 鲍时翔, 郑学勤, 等. 脂肪酸脱饱和酶的研究进展[J]. 生物技术通报, 1998, 4(1):1-9. [13] Pereira S L, Leonard A E, Mukerji P. Recent advances in the study of fatty acid desaturases from animals and lower eukaryotes[J]. Prostaglandins, Leukotrienes and Essential fatty Acids, 2003, 68(2):97-106. [14] 曾硕士, 江黎明, 元冬娟. 脂肪酸去饱和酶的研究进展[J]. 生命科学, 2008, 20(5):816-820. [15] Fukuzawa M, Fu X, Tatsuki S, et al. cDNA cloning and in situ hybridization of Δ11-desaturase, a key enzyme of pheromone biosynthesis in Ostrinia scapulalis (Lepidoptera:Crambidae)[J]. Journal of Insect Physiology, 2006, 52(5):430-435. [16] Knipple D C, Rosenfield C L, Miller S J, et al. Cloning and functional expression of a cDNA encoding a pheromone gland-specific acyl-CoA Δ11-desaturase of the cabbage looper moth, Trichoplusia ni[J]. Proceedings of the National Academy of Science of the United States of America, 1998, 95(26):15287-15292. [17] Rodríguez S, Hao G, Liu W, et al. Expression and evolution of Δ9 and Δ11 desaturase genes in the moth Spodoptera littoralis[J]. Insect Biochemistry and Molecular Biology, 2004, 34(12):1315-1328. [18] Svatoš A, Kalinová B, Boland W. Stereochemistry of lepidopteran sex pheromone biosynthesis:a comparison of fatty acid-CoA Δ11-(Z)-desaturases in Bombyx mori and Manduca sexta female moths[J]. Insect Biochemistry and Molecular Biology, 1999, 29(3):225-232. [19] Liu W, Jiao H, O'connor M, et al. Moth desaturase characterized that produces both Z and Eisomers of Δ11-tetradecenoic acids[J]. Insect Biochemistry and Molecular Biology, 2002, 32(11):1489. [20] Ding B J, Carraher C, Löfstedt C. Sequence variation determining stereochemistry of a Δ11 desaturase active in moth sex pheromone biosynthesis[J]. Insect Biochemistry and Molecular Biology, 2016, 74(1):68-75. [21] Fujii T, Yasukochi Y, Rong Y, et al. Multiple Δ11-desaturase genes selectively used for sex pheromone biosynthesis are conserved in Ostrinia moth genomes[J]. Insect Biochemistry and Molecular Biology, 2015, 61(1):62-68. [22] 王伟. 七星瓢虫滞育调控的温光周期效应及滞育后生物学研究[D]. 北京:中国农业科学院, 2012. [23] 忻亦芬. 大豆蚜简易人工饲养[J]. 沈阳农学院学报, 1982, 1:77-80. [24] Folch J, Lees M, Sloane-Stanley G H. A simple method for the isolation and purification of total lipids from animal tissues[J]. Journal of Biological Chemistry, 1957, 226(1):497-509. [25] Zhou G L, Flowers M, Friedrich K, et al. Metabolic fate of[14 C]-labeled meal protein amino acids in Aedes aegypti mosquitoes[J]. Journal of Insect Physiology, 2004, 50(4):337-349. [26] Nakashima S, Zhao Y, Nozawa Y. Molecular cloning of Δ9 fatty acid desaturase from the protozoan Tetrahymena thermophila and its mRNA expression during thermal membrane adaptation[J]. Biochemical Journal, 1996, 317(1):29-34. [27] Stukey J E, Mc Donough V M, Martin C E. Isolation and characterization of OLE1, a gene affecting fatty acid desaturation from Saccharomyces cerevisiae[J]. Journal of Biological Chemistry, 1989, 264(28):16537-16544. [28] Mitchell A G. A novel cytochrome b5-like domain is linked to the carboxyl terminus of the Saccharomyces cerevisiae Δ9 fatty acid desaturase[J]. Journal of Biological Chemistry, 1995, 270(50):29766-29772. [29] Shanklin J, Whittle E, Fox B G. Eight histidine residues are catalytically essential in a membrane-associated iron enzyme, stearoyl-CoA desaturase, and are conserved in alkane hydroxylase and xylene monooxygenase[J]. Biochemistry, 1994, 33(43):12787-12794. [30] Hahn D A, Denlinger D L. Meeting the energetic demands of insect diapause:nutrient storage and utilization[J]. Journal of Insect Physiology, 2007, 53(8):760-773. [31] Hahn D A, Denlinger D L. Energetics of insect diapause[J]. Annual Review of Entomology, 2011, 56:103-121. [32] Arrese E L, Soulages J L. Insect fat body:energy, metabolism, and regulation[J]. Annual Review of Entomology, 2010, 55:207-225. [33] Sim C, Denlinger D L. Transcription profiling and regulation of fat metabolism genes in diapausing adults of the mosquito Culex pipiens[J]. Physiological Genomics, 2009, 39(3):202-209. |