[1] Zhang S W, Gan Y T, Xu B L. Biocontrol potential of a native species of Trichoderma longibrachiatum against Meloidogyne incognita[J]. Applied Soil Ecology, 2015, 94:21-29. [2] Zhang S W, Gan Y T, Xu B L, et al. Mechanisms and characterization of Trichoderma longibrachiatum T6 in suppressing nematodes (Heterodera avenae) in wheat[J]. Frontiers in Plant Science, 2017, 8:1491. [3] Abad P, Gouzy J, Aury J M, et al. Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita[J]. Nature Biotechnology, 2008, 26:909-915. [4] Zhang S W, Gan Y T, Xu B L. Efficacy of Trichoderma longibrachiatum in the control of Heterodera avenae[J]. Biocontrol, 2014, 59:319-331. [5] 金娜, 刘倩, 简恒. 植物寄生线虫生物防治研究新进展[J]. 中国生物防治学报, 2015, 31(5):789-800. [6] 焦俊, 韩冰洁, 王媛媛, 等. 毒杀南方根结线虫的木霉种类鉴定及活性研究[J]. 植物保护, 2015, 41(2):64-69. [7] Li J, Zou C G, Xu J P, et al. Molecular mechanisms of nematode-nematophagous microbe interactions:basis for biological control of plant-parasitic nematodes[J]. Annual Review of Phytopathology, 2015, 53:67-95. [8] Ait-Lahsen H, Soler A, Rey M, et al. An antifungal Exo-α-1, 3-glucanase (AGN13.1) from the biocontrol fungus Trichoderma harzianum[J]. Applied and Environmental Microbiology, 2001, 67(12):5833-5839. [9] Bhuyan S A. Antagonistic effective of Trichoderma viride, T. harzianum and Asperigillus terreus on Rhizoctonia solani causing sheath blight of rice[J]. Journal of the Agricultural Science Society of North East India, 1994, 7(1):125-127. [10] Sahebani N, Hadavi N. Study on the systemic effect of root-knot nematode (Meloidogyne javanica) on phenylalanine ammonialyase enzyme activity in tomato root in the interaction between root-knot nematode and tomato Fusarium wilt (Fusarium oxysporum f. sp. lycopersici)[J]. Journal of Science Baldoni Technology of Agriculture & Natural Resources, 2008, 12(43):919-925. [11] Baldoni D B, Antoniolli Z I, Mazutti M A, et al. Chitinase production by Trichoderma koningiopsis UFSMQ40 using solid state fermentation[J]. Brazilian Journal of Microbiology, 2020, 51:1897-1908. [12] Zhang S W, Gan Y T, Xu B L, et al. The parasitic and lethal effects of Trichoderma longibrachiatum against Heterodera avenae[J]. Biological control, 2014, 72:1-8. [13] Szabó M, Csepregi C, Gálber M, et al. Control plant-parasitic nematodes with Trichoderma species and nematode-trapping fungi:The role of chi18-5 and chi18-12 genes in nematode egg-parasitism[J]. Biological Control, 2012, 63(2):121-128. [14] 朱先婷, 赵洋, 王凯, 等. 寄生于南方根结线虫卵的长梗木霉几丁质酶基因TIChi46的克隆[J]. 植物病理学报, 2016, 51(1):72-83. [15] Nicol J M, Rivoal R. Global knowledge and its application for the integrated control and management of nematodes on wheat[M]//Ciancio A, Mukerji K G, eds. Integrated Management and Biocontrol of Vegetable and Grain Crops Nematodes. New York:Springer Press, 2008, 251-294. [16] Geremia R A, Goldman G H, Jacobs D, et al. Molecular characterization of the proteinase-encoding gene, prb1, related to mycoparasitism by Trichoderma harzianum[J]. Molecular Microbiology, 1993, 8(3):603-613. [17] Garcia L S. Diagnostic medical parasitology:an update[J]. Clinical Microbiology Newsletter, 1994, 16(14):105-110. [18] Sharon E, Bar-Eyal M, Chet I, et al. Biological control of the root-knot nematode Meloidogyne javanica by Trichoderma harzianum[J]. Phytopathology, 2001, 91:687-693. [19] Suarez B, Rey M, Castillo P, et al. Isolation and characterization of PRA1, a trypsin-like protease from the biocontrol agent Trichoderma harzianum CECT 2413 displaying nematicidal activity[J]. Applied Microbiology and Biotechnology, 2004, 65(1):46-55. [20] Stleger R J, Bidochka M J, Roberts D W. Isoforms of the cuticle-degrading pr1 proteinase and production of a metalloproteinase by Metarhizium anisopliae[J]. Archives of Biochemistry & Biophysics, 1994, 313(1):1-7. [21] Chen L L, Liu L J, Shi M, et al. Characterization and gene cloning of a novel serine protease with nematicidal activity from Trichoderma pseudokoningii SMF2[J]. FEMS Microbiology Letters, 2009, 299(2):135-142. [22] Viterbo A, Harel M, Chet I. Isolation of two aspartyl proteases from Trichoderma asperellum expressed during colonization of cucumber roots[J]. FEMS Microbiology Letters, 2004, 238(1):151-158. [23] Szabó M, Urbán P, Virányi F, et al. Comparative gene expression profiles of Trichoderma harzianum proteases during in vitro nematode egg-parasitism[J]. Biological Control, 2013, 67(3):337-343. [24] Djian C, Pijarowski L, Ponchet M, et al. Acetic acid:a selective nematicidal metabolite from culture filtrates of Paecilomyces lilacinus (Thom) Samson and Trichoderma longibrachiatum Rifai[J]. Nematologica, 1991, 37(1):101-112. [25] 张树武, 徐秉良, 薛应钰, 等. 长枝木霉对禾谷胞囊线虫的寄生和致死作用[J]. 微生物学报, 2014, 54(7):793-802. [26] Zhang S X, Zhang X. Effects of two composted plant pesticide residues, incorporated with Trichoderma viride, on root-knot nematode in Balloonflower[J]. Agricultural Science in China, 2009, 8:447-454. [27] Siddiqui I A, Shaukat S S. Trichoderma harzianum enhances the production of nematicidal compounds in vitro and improves biocontrol of Meloidogyne javanica by Pseudomonas fluorescens in tomato[J]. Letters in Applied Microbiology, 2004, 38:169-175. [28] Girlanda M, Perotto S, Moenne-Loccoz Y, et al. Impact of biocontrol Pseudomonas fluorescens CHA0 and a genetically modified derivative on the diversity of culturable fungi in the cucumber rhizosphere[J]. Applied and Environmental Microbilogy, 2001, 67:1851-1864. [29] Meyer S L F, Huettel R N, Liu X Z, et al. Activity of fungal culture filtrates against soybean cyst nematode and root-knot nematode egg hatch and juvenile motility[J]. Nematology, 2004, 6:23-32. [30] Sankaranarayanan C, Hussaini S, Sreeramakumar S, et al. Nematicidal effect of fungal filtrates against root-knot nematodes[J]. Journal of Biological Control, 1997, 11:37-41. [31] Yang Z S, Li G H, Zhao P J, et al. Nematicidal activity of Trichoderma spp. and isolation of an active compound[J]. World Journal of Microbiology and Biotechnology, 2010, 26:2297-2302. [32] Zhang S W, Gan Y T, Liu J, et al. Trichoderma longibrachiatum optimization of the fermentation media and parameters for the bio-control potential of T6 against nematodes[J]. Frontiers in Microbiology, 2020, 11:574601. [33] Yang Z S, Yu, Z F, Lei L P, et al. Nematicidal effect of volatiles produced by Trichoderma sp.[J]. Journal of Asia-Pacific Entomology, 2012, 15:647-650. [34] 徐文, 黄媛媛, 贾振华, 等. 木霉防治灰霉病的研究进展[J]. 微生物学通报, 2017, 44(9):2184-2191. [35] Mukherjee P K, Horwitz B A, Kenerley C M. Secondary metabolism in Trichoderma-a genomic perspective[J]. Microbiology, 2012, 158(1):35-45. [36] 宋晓妍, 张玉忠, 王元秀. 木霉Peptaibols抗菌肽的研究进展[J]. 微生物学报, 2011, 51(4):438-444 [37] Anitha R, Murugesan K. Production of gliotoxin on natural substrates by Trichoderma virens[J]. Journal of Basic Microbiology, 2005, 45:12-19. [38] Li G, Zhang K, Xu J, et al. Nematicidal substances from fungi[J]. Recent Patents on Biotechnology, 2007, 1(3):212-233. [39] 梁志怀, 张屹, 吕刚, 等. 哈茨木霉T2-16发酵产物中抗菌促长活性物质的初步研究[C]. 病虫害绿色防控与农产品质量安全, 2015, 592. [40] Schirmböck M, Lorito M, Wang Y L, et al. Parallel formation and synergism of hydrolytic enzymes and peptaibol antibiotics, molecular mechanisms involved in the antagonistic action of Trichoderma harzianum against phytopathogenic fungi[J]. Applied and Environmental Microbiology, 1994, 60(12):4364-4370. [41] 尤佳琪, 吴明德, 李国庆. 木霉在植物病害生物防治中的应用及作用机制[J]. 中国生物防治学报, 2019, 35(6):966-976. [42] Ainhoa M M, Fernandez I, Lok G B, et al. Shifting from priming of salicylic acid-to jasmonic acid-regulated defences by Trichoderma protects tomato against the root knot nematode Meloidogyne incognita[J]. New Phytologist, 2017, 213:1363-1377. [43] 陈捷. 木霉菌诱导植物抗病性研究新进展[J]. 中国生物防治学报, 2015, 31(5):733-741. [44] Fu K H, Liu L X, Fan L L. Accumulation of copper in Trichoderma reesei transformants, constructed with the modified Agrobacterium tumefaciens-mediated transformation technique[J]. Biotechnology Letters, 2010, 32:1815-1820. [45] Harman G E, Howell C R, Viterbo A, et al. Trichoderma species-opportunistic, avirulent plant symbionts[J]. Nature Reviews Microbiology, 2004, 2(1):43-56. [46] Alonso-Ramirez A, Poveda J, Martin I, et al. Salicylic acid prevents Trichoderma harzianum from entering the vascular system of roots[J]. Molecular Plant Pathology, 2015, 15(8):823-831. [47] Martínez-Medina A, Appels F, Wees S. Impact of salicylic acid- and jasmonic acid-regulated defences on root colonization by Trichoderma harzianum T-78[J]. Plant Signaling & Behavior, 2017, 12(8):e1345404. [48] Medeiros H A D, Araújo Filho J V D, Freitas L G D, et al. Tomato progeny inherit resistance to the nematode Meloidogyne javanica linked to plant growth induced by the biocontrol fungus Trichoderma atroviride[J]. Scientific Reports, 2017, 7:40216. [49] Shoresh M, Harman G E. The molecular basis of shoot responses of maize seedlings to Trichoderma harzianum T22 inoculation of the root:a proteomic approach[J]. Plant Physiology, 2008, 147(4):2147-2163. [50] Gupta R, Saikia S K, Pandey R. Bioconsortia augments antioxidant and yield in Matricaria recutita L. against Meloidogyne incognita(Kofoid and White) chitwood infestation[J]. Proceedings of the National Academy of Sciences India, 2017, 87(2):335-342. [51] 赵蕾, 滕安娜. 木霉对植物的促生及诱导抗性研究进展[J]. 植物保护, 2010, 36(1):43-46. [52] Harman G E. Myths and dogmas of biocontrol changes in perceptions derived from research on Trichoderma harzinum T-22[J]. Plant Disease, 2000, 84(4):377-393. [53] 戚玮真. 生防木霉菌对植物的解盐促生作用及其机制的硏究[D]. 济南:山东师范大学, 2012. [54] Moreno C A, Castillo F, Gonzalez A, et al. Biological and molecular characterization of the response of tomato plants treated with Trichoderma koningiopsis[J]. Physiological and Molecular Plant Pathology, 2009, 74(2):111-120. [55] 张成, 廖文敏, 薛鸣, 等. 棘孢木霉DQ-1分生孢子固体发酵优化及其对4种作物幼苗生长的影响[J]. 中国生物防治学报, 2021, 37(2):315-322. [56] Fan H Y, Yao M L, Wang H M, et al. Isolation and effect of Trichoderma citrinoviride Snef1910 for the biological control of root-knot nematode, Meloidogyne incognita[J]. BMC Microbiology, 2020, 20:299. [57] Zhang S W, Xu B L, Gan Y T. Trichoderma longibrachiatum seed treatment with T6 promotes wheat seedling growth under NaCl stress through activating the enzymatic and nonenzymatic antioxidant defense systems[J]. International Journal of Molecular Sciences, 2019, 20(15):3729. [58] 朱佳芯, 张庚, 商美妮, 等. 耐热木霉菌株筛选及其对热作区香蕉促生效应的研究[J]. 微生物学报, 2021, 61(1):206-218. [59] 赵玳琳, 何海永, 吴石平, 等. 棘孢木霉GYSW-6m1对草莓炭疽病的生防机制及其防病促生作用研究[J]. 中国生物防治学报, 2020, 36(4):587-595. [60] Altomare C, Norvell W, Björkman T, et al. Solubilization of phosphates and micronutrients by the plant-growth-promoting and biocontrol fungus Trichoderma harzianum Rifai 1295-22[J]. Applied and Environmental Microbiology, 1999, 65(7):2926-2933. [61] Contreras-Cornejo H A, Macias-Rodriguez L, Cortes-Penagos C, et al. Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis[J]. Plant Physiology, 2009, 149(3):1579-1592. [62] Bharti M K, Sharma A K, Pandey A K, et al. Physiological and biochemical basis of growth suppressive and growth promotory effect of Trichoderma strains on tomato plants[J]. National Academy Science Letters, 2012, 35(5):355-359. [63] Dunlop R W, Simon A, Sivasithamparam K, et al. An antibiotic from Trichoderma koningii active against soilborne plant pathogens[J]. Journal of Natural Products, 1989, 52(1):67-74. [64] Lee S, Hung R, Yap M, et al. Age matters:the effects of volatile organic compounds emitted by Trichoderma atroviride on plant growth[J]. Archives of Microbiology, 2015, 197(5):723-727. |