[1] Webb R E, Goth R W. A seedborne bacterium isolated from watermelon[J]. Plant Disease Report, 1965, 49(8):18-21. [2] 张兴平, Rhod B B. 一种毁灭性的西瓜新病害细菌性果实腐斑病[J]. 中国西瓜甜瓜, 1990(2):12, 44-45. [3] 赵廷昌, 孙福在, 王兵万. 西瓜细菌性果斑病研究进展[J]. 植保技术与推广, 2001, 21(3):37-38. [4] Márcia T C, Silveira E B D, Mariano R D L R, et al. Growth of Acidovorax avenae subsp. citrulli under different variable temperature, pH, sodium chloride concentrations and carbon sources[J]. Ciência Rural, 2005, 35(6):1313-1318. [5] Wang T, Yang Y, Zhao T. Genome sequence of a copper-resistant strain of Acidovorax citrulli causing bacterial fruit blotch of melons[J]. Genome Announcements. 2015, 23, 3(2):e00310-15. [6] Nadeem S M, Ahmad M, Zahir Z A, et al. The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments[J]. Biotechnology Advances, 2014, 32:429-448. [7] Malusá E, Sas-Paszt L, Ciesielska J. Technologies for beneficial microorganisms inocula used as biofertilizers[J]. The Scientific World Journal, 2012(1):491206. [8] Prabhukarthikeyan S R, Keerthana U, Raguchander T. Antibiotic-producing Pseudomonas fluorescens mediates rhizome rot disease resistance and promotes plant growth in turmeric plants[J]. Microbiological Research, 2018, 210:65-73. [9] Peeran M F, Krishnan N, Thangamani P R, et al. Development and evaluation of water-in-oil formulation of Pseudomonas fluorescens (FP7) against Colletotrichum musae incitant of anthracnose disease in banana[J]. European Journal of Plant Pathology, 2014, 138(1):167-180. [10] 张清霞, 吴小刚, 张力群, 等. 荧光假单胞菌2P24调控基因突变体定殖能力和生防效果分析[J]. 中国生物防治, 2008, 24(1):7. [11] Brooks S. Napthoquinones from Neocosmospora sp.-antibiotic activity against Acidovorax citrulli, the causative agent of bacterial fruit blotch in watermelon and melon[J]. Journal of Fungi, 2021, 7(5):370. [12] 王全亮, 于勇谋, 曹亚萍, 等. 两系混种防控小麦黄矮病技术研究[J]. 中国植保导刊, 2018, 38(1):4. [13] 丁富功, 侯泽豪, 张迎新, 等. 玉米盛花期不同时间授粉对果穗结实性状的影响[J]. 长江大学学报:自然科学版, 2019, 16(10):6. [14] Giannopolitis C N, Ries S K. Superoxide dismutases:I. Occurrence in higher plants[J]. Plant Physiology,1977, 59:309-314. [15] Kato-Noguchi, H, Macías, F A. Effects of 6-methoxy-2-benzoxazolinone on the germination and α-amylase activity in lettuce seeds[J]. Journal of Plant Physiology, 2005, 162:1304-1307. [16] Scebba F, Sebastiani L, Vitagliano C. Activities of antioxidant enzymes during senescence of Prunus armeniaca leaves[J]. Biologia Plantarum, 2001, 44:41-46. [17] Islam M R, Hossain M R, Jesse D, et al. Characterization, identification and expression profiling of genome-wide R-genes in melon and their putative roles in bacterial fruit blotch resistance[J]. BMC Genetics, 2020, 21:80. [18] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2- ΔΔCT method[J]. Methods, 2001, 25(4):2-8. [19] Chitra P, Jijeesh C M. Biopriming of seeds with plant growth promoting bacteria Pseudomonas fluorescens for better germination and seedling vigour of the East Indian sandalwood[J]. New Forests, 2021, 52:829-841. [20] Moeinzadeh A, Sharif-Zadeh F, Ahmadzadeh M, et al. Biopriming of sunflower (Helianthus annuus L.) seed with Pseudomonas fluorescens for improvement of seed invigoration and seedling growth[J]. Australian Journal of Crop Science, 2010, 4(7):564-570. [21] 刘九成, 张伟, 吴小刚, 等. 荧光假单胞菌2P24中ret对抗生素2,4-二乙酰基间苯三酚合成的影响[J]. 微生物学报, 2013(2):118-126. [22] Gong L, Tan H, Chen F, et al. Novel synthesized 2, 4-DAPG analogues:antifungal activity, mechanism and toxicology[J]. Scientific Reports, 2016, 6:32266. [23] Ellis J, Dodds P, Pryor T. Structure, function and evolution of plant disease resistance genes[J]. Current Opinion in Plant Biology, 2000, 3:278-284. [24] Raja S N, Jeffery L, Caplan K C, et al. The role of TIR-NBS and TIR-X proteins in plant basal defense responses[J]. Plant Physiology, 2013, 162:1459-1472. |