[1] 张红伟, 李林. 我国玉米生物育种技术体系发展与应用探讨[J]. 玉米科学, 2025, 33(6): 10-13. [2] 薛文凤, 程赛赛, 胡锋, 等. 生态集约化提升农田土壤多功能性的研究进展[J]. 土壤学报, 2026, 63(8): 1-18. [3] 王振营, 王晓鸣. 我国玉米病虫害发生现状、趋势与防控对策[J]. 植物保护, 2019, 45(1): 1-11. [4] 郭成, 王宝宝, 杨洋, 等. 玉米茎腐病研究进展[J]. 植物遗传资源学报, 2019, 20(5): 1118-1128. [5] Muller E E L, Faust K, Widder S, et al. Using metabolic networks to resolve ecological properties of microbiomes[J]. Current Opinion in Systems Biology, 2018, 8: 73-80. [6] Rampersad S N. Pathogenomics and management of Fusarium diseases in plants[J]. Pathogens, 2020, 9(5): 340. [7] 任璐, 田舒媛, 吕红, 等. 芽胞杆菌种衣剂对玉米茎基腐病的防治效果及对玉米的促生作用[J]. 植物保护学报, 2023, 50(5): 1358-1367. [8] 宋佐衡, 陈捷, 刘伟成, 等. 辽宁省玉米茎腐病病原菌组成及优势种研究[J]. 玉米科学, 1995(S1): 40-42. [9] 张瑞英, 张坪. 黑龙江省玉米茎基腐病病原菌研究初报[J]. 植物保护学报, 1993, 20(3): 287-288. [10] Liu Y, Shu X, Chen L, et al. Plant commensal type VII secretion system causes iron leakage from roots to promote colonization[J]. Nature Microbiology, 2023, 8(8): 1434-1449. [11] 孙秀华, 张春山, 孙亚杰, 等. 吉林省玉米茎腐病危害损失及优势病原菌种类研究[J]. 吉林农业科学, 1992, 61(2): 43-46. [12] 崔凌霄, 杨成德, 田有辉, 等. 甘肃省玉米镰孢茎腐病病原鉴定及其生物学特性[J]. 草业科学,2018, 35(10): 2373-2380. [13] 张小杰, 王春明, 周天旺, 等. 宁夏地区玉米镰孢茎腐病病原菌的分离与鉴定[J]. 草地学报, 2021, 29(4): 805-812. [14] Xia L K, Cao Y Y, Wang J, et al. First report of Fusarium culmorum causing maize stalk rot in China[J]. Plant Disease, 2022, 106(5): 1521. [15] 贺娟, 何鹏飞, 赵正龙, 等. 云南省玉米茎基腐病病原镰孢菌的种群结构研究[J]. 玉米科学, 2017, 25(4): 135-143. [16] 朱华, 梁继农, 王彰明, 等. 江苏省玉米茎腐病菌种类鉴定[J]. 植物保护学报, 1997, 24(1): 49-54. [17] 徐书法, 陈捷, 高增贵, 等. 中国玉米茎基腐病和穗腐病研究进展(英文)[J]. 植物病理学报, 2006, 36(3): 193-203. [18] 刘树森, 马红霞, 郭宁, 等. 黄淮海夏玉米主产区茎腐病主要病原菌及优势种分析[J]. 中国农业科学, 2019, 52(2): 262-272. [19] 梁思聪, 陈东, 张景欣, 等. 玉米茎腐病病原菌致病机制及防控技术研究进展[J]. 广东农业科学, 2025, 52(6): 13-26. [20] 郭宁, 石洁. 不同种衣剂对玉米茎腐病的防治效果[J]. 河北农业科学, 2010, 14(8): 117-118, 123. [21] 韩成卫, 孔晓民, 吴秋平, 等. 不同化学药剂对玉米茎腐病的田间药效试验研究[J]. 山东农业科学, 2016, 48(7): 114-117. [22] Ni B, Xiao L, Lin D, et al. Increasing pesticide diversity impairs soil microbial functions[J]. Proceedings of the National Academy of Sciences, 2025, 122(2): e2419917122. [23] 高杉. 微生物种衣剂的研制及其对盐胁迫下小麦幼苗生长的影响[D]. 呼和浩特: 内蒙古农业大学, 2021. [24] 周茂超, 黄艳娜, 段赛菲, 等. 微生物种衣剂的研制及其对玉米苗期生长的影响[J]. 中国农业科技导报, 2021, 23(4): 110-118. [25] Liu Z, Zhang J, Fan C, et al. Influence of Bacillus subtilis strain Z-14 on microbial ecology of cucumber rhizospheric vermiculite infested with fusarium oxysporum f. sp. cucumerinum[J]. Pesticide Biochemistry Physiology, 2024, 201: 105875. [26] 马群飞. 混合发酵长枝木霉和解淀粉芽孢杆菌防治植物病害的研究[D]. 济南: 山东大学, 2021. [27] Li M, Hu J, Wei Z, et al. Synthetic microbial communities: Sandbox and blueprint for soil health enhancement[J]. iMeta, 2024, 3(1): e172. [28] Berendsen R L, Pieterse C M J, Bakker P A H M. The rhizosphere microbiome and plant health[J]. Trends in Plant Science, 2012, 17(8): 478-486. [29] Tsoi R, Wu F, Zhang C, et al. Metabolic division of labor in microbial systems[J]. Proceedings of the National Academy of Sciences, 2018, 115(10): 2526-2531. [30] Roell G W,Zha J,Carr R R,et al. Engineering microbial consortia by division of labor[J]. Microbial Cell Factories, 2019, 18(1): 35. [31] Xia X, Wei Q, Wu H, et al. Bacillus species are core microbiota of resistant maize cultivars that induce host metabolic defense against corn stalk rot[J]. Microbiome, 2024, 12(1): 156. [32] 孙华, 边强, 郭宁, 等. 不同药剂对玉米茎腐病的防效评价[J]. 玉米科学, 2024, 32(9): 108-114. [33] Patani A, Patel M, Islam S, et al. Recent advances in Bacillus-mediated plant growth enhancement: a paradigm shift in redefining crop resilience[J]. World Journal of Microbiology and Biotechnology, 2024, 40(2): 77. [34] 申芬, 蒋继志, 侯宁, 等. 复合发酵菌液的离体防病效果及对马铃薯的促生作用[J]. 河北农业大学学报, 2018, 41(6): 69-74. [35] 刘梓豪. 防控玉米种栖镰刀菌的根际菌群构建与菌群内部互作机制研究[D]. 南京: 南京农业大学, 2021. [36] Rongyao C A O, Yanli X I E, Chen L I U, et al. Degradation of deoxynivalenol by Bacillus velezensis and its inhibition on the growth of Fusarium graminis[J]. Journal of Henan University of Technology(Natural Science Edition), 2022, 43(3): 74-80, 88. [37] 刘悦, 曾凡松, 龚双军, 等. 解淀粉芽胞杆菌EA19菌株对小麦赤霉病的防治效果[J]. 植物保护学报, 2020, 47(6): 1270-1276. [38] 周妍茹, 孟虹百, 代思遥, 等. 木霉菌复配生物种衣剂的研制及对大豆根腐病的防效[J]. 植物保护, 2026, 51(1) :1-12. [39] 代诗佳, 王敬敬, 魏茉, 等.贝莱斯芽孢杆菌FH-1通过调控特定时空的土壤微生物组促进水稻苗生长[J]. 微生物学通报, 2024, 51(7): 2381-2410. [40] 刘东旭. 枯草芽孢杆菌与营养液处理促进黄瓜生长及品质提升的生理机制[D]. 太原: 山西农业大学, 2021. [41] Souza M S T, de Baura V A, Santos S A, et al. Azospirillum spp. from native forage grasses in Brazilian Pantanal floodplain: biodiversity and plant growth promotion potential[J]. World Journal of Microbiology and Biotechnology, 2017, 33(4): 81. [42] Liu Y, Chen L, Wu G, et al. Identification of root-secreted compounds involved in the communication between cucumber, the beneficial Bacillus amyloliquefaciens, and the soil-borne pathogen Fusarium oxysporum[J]. Molecular Plant Microbe Interactionst, 2017, 30(1): 53-62. [43] Mihalache G, Balaes T, Gostin I, et al. Lipopeptides produced by Bacillus subtilis as new biocontrol products against fusariosis in ornamental plants[J]. Environmental Science and Pollution Research, 2018, 25(30): 29784-29793. [44] Tahir H A S, Gu Q, Wu H, et al. Effect of volatile compounds produced by Ralstonia solanacearum on plant growth promoting and systemic resistance inducing potential of Bacillus volatiles[J]. BMC Plant Biology, 2017, 17(1): 133. |