journal1 ›› 2019, Vol. 35 ›› Issue (3): 307-324.DOI: 10.16409/j.cnki.2095-039x.2019.03.020
SHI Wangpeng1,2, TAN Shuqian2
Online:
2019-06-08
Published:
2019-06-17
CLC Number:
SHI Wangpeng, TAN Shuqian. Current Status and Trend on Grasshopper and Locust Biological Control[J]. journal1, 2019, 35(3): 307-324.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zgswfz.com.cn/EN/10.16409/j.cnki.2095-039x.2019.03.020
[1] Simpson, S J, Sword G A. Locusts[J]. Current Biology, 2008, 18(9):364-366. [2] DAWR. http://www.agriculture.gov.au/pests-diseases-weeds/locusts/about/history,2017. [3] Ryckman L L. The great locust mystery. Rocky Mountain News. Retrieved May 20, 2007. [4] Streett D A. Future prospects for microbial control of grasshoppers[M]//Capinera J L, ed. Integrated Pest Management on Rangeland:A Shortgrass Prairie Perspective. Boulder, CO:Westview Press, 1987, 205-218. [5] Henry J E. Experimental application of Nosema Locustae for control of grasshoppers[J]. Journal of Invertebrate Pathology, 1971, 18(3):389-394. [6] Lange C E. The host and geographical range of the grasshopper pathogen Paranosema (Nosema) locustae revisited[J]. Journal of Orthoptera Research, 2005, 14(2):137-141. [7] Zhang K, Xing X, Hou X, et al. Population dynamics and infection prevalence of grasshopper (Orthoptera:Acrididae) after application of Paranosema Locustae (Microsporidia)[J]. Egyptian Journal of Biological Pest Control, 2015, 25(1):33-38. [8] Shi W P, Wang Y Y, Lu F, et al. Persistence of Paranosema (Nosema) locustae among grasshopper populations in the Inner Mongolia Rangeland, China[J]. BioControl, 2009, 54(1):77-84. [9] Stentiford G D, Becnel J J, Weiss L M, et al. Microsporidia-emergent pathogens in the global food chain[J]. Trends in Parasitology, 2016, 32(4):336-348. [10] Lockwood J A, Bomar C R, Ewen A B. The history of biological control with Nosema locustae:lessons for locust management[J]. International Journal of Tropical Insect Science, 1999, 19(4):333-350. [11] Henry J E. Epizootiology of infection by Nosema locustae Canning (Microsporida:Nosematidae) in grasshoppers[J]. Acrida, 1972, 1:111-120. [12] 王丽英. 蝗虫微孢子虫对东亚飞蝗及蒙新草原蝗虫的感染试验[J]. 北京农业大学学报,1987, 13(4):459-462. [13] 董雁军. 应用蝗虫微孢子虫在内蒙典型草原防治蝗虫的初步试验[D]. 北京:北京农业大学, 1989. [14] Guo Y, An Z, Shi W. Control of grasshoppers by combined application of Paranosema locustae and an insect growth regulator (Cascade®) in rangelands in China[J]. Journal of Economic Entomology, 2012, 105(6):1915-1920. [15] 石旺鹏, 严毓骅, 朱恩林, 等. 海南省撩荒地生态系统飞蝗的持续控制[J]. 植物保护学报, 2001, 28(3):207-212. [16] Shi W P, Wang Y Y, Lü F. Persistence of Paranosema (Nosema) locustae (Microsporidia:Nosematidae) among grasshopper (Orthoptera:Acrididae) populations in the Inner Mongolia Rangeland, China[J]. BioControl, 2009, 54(1):77-84. [17] Miao J, Guo Y, Shi W P. The persistence of Paranosema locustae after application in Qinghai Plateau, China[J]. Biocontrol Science and Technology, 2012, 22:733-735. [18] Henry J E, Jutila J W. The isolation of a polyhedrosis virus from a grasshopper[J]. Journal of Invertebrate Pathology, 1966, 8(3):417-418. [19] Lange C E, Wysiecki M L. Epizootias de Nosema locustae (Microsporidia) in Melanoplinos (Melanoplinae) de Buenos Airesy La Pampa[J]. Revista La Sociedad Entomologica Argentina, 1999, 58:76-78. [20] 任程, 蒋湘, 石旺鹏. 蝗虫微孢子虫防治青藏高原蝗虫对主要天敌种群数量的影响[J]. 黑龙江畜牧兽医, 2004, 4:11-13. [21] Christian B, Yanina M, Santiago P. Status of the alien pathogen Paranosema locustae (Microsporidia) in grasshoppers (Orthoptera:Acridoidea) of the Argentine Pampas[J]. Biocontrol Science and Technology, 2012, 22(5):497-512. [22] Plischuk S, Bardi C J, Lange C E. Spore loads of Paranosema locustae, (Microsporidia) in heavily infected grasshoppers (Orthoptera:Acridoidea) of the Argentine Pampas and Patagonia[J]. Journal of Invertebrate Pathology, 2013, 114(1):89-91. [23] Shi W P, Guo Y, Xu C, et al. Unveiling the mechanism by which microsporidian parasites prevent locust's swarm behavior[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(4):1343-1348. [24] Sergey A T, Igor V S, Alexander A T, et al. Heterologous expression of Paranosema (Antonospora) locustae hexokinase in lepidopteran, Sf9, cells is followed by accumulation of the microsporidian protein in insect cell nuclei[J]. Journal of Invertebrate Pathology, 2017, 143:104-107. [25] Lomer C J, Bateman R P, Johnson D L, et al. Biological control of locusts and grasshoppers[J]. Annual Review of Entomology. 2001, 46:667-702. [26] Ramoska W A, Hajek A E, Ramos M E, et al. Infection of grasshoppers (Orthoptera:Acrididae) by members of the Entomophaga grylli species complex (Zygomycetes:Entomophthorales)[J]. Journal of Invertebrate Pathology, 1988, 52:309-313. [27] Bidochka M J, Walsh S R A, Ramos M E, et al. Pathotypes in the Entomophaga grylli species complex of grasshopper pathogens differentiated with random amplification of polymorphic DNA and cloned-DNA probes[J]. Applied and Environmental Microbiology, 1995, 61:556-560. [28] Bidochka M J, McDonald M A, St. Leger R J, et al. Differentiation of species and strains of entomopathogenic fungi by random amplification of polymorphic DNA (RAPD)[J]. Current Genetics, 1994, 25:107-113. [29] Goettel M S, Dan L J, Inglis G D. The role of fungi in the control of grasshoppers[J]. Canadian Journal of Botany, 2011, 73(S1):71-75. [30] Goettel M S. Fungal agents for biocontrol[M]//Lomer C J, Prior C, eds. Biological Control of Locusts and Grasshoppers. Wallingford, UK:C.A.B. International, 1992, 122-132. [31] Chase A R, Osborne L S, Ferguson V M. Selective isolation of the entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae from an artificial potting medium[J]. Florida Entomologist, 1986, 69:285-292. [32] Gupta R K, Stefan T, Jaronski K S. First record on epizootics of Entomophthora grylli on grasshopper in Indian subcontinent:pathogen city and biocontrol potential on Oxya velox[J]. Archives of Phytopathology and Plant Protection, 2011, 44(5):475-483. [33] Pelizza S A, Stenglein S A, Cabello M N. First record of Fusarium verticillioides as an entomopathogenic fungus of grasshoppers[J]. Journal of Insect Science, 2014, 11(1):56-64. [34] Gao Q, Jin K, Ying S H, et al. Genome sequencing and comparative transcriptomics of the model entomopathogenic fungi Metarhizium anisopliae and M. acridum[J]. PLoS Genetics, 2011, 7(1):e1001264. [35] Wang C, Feng M. Advances in fundamental and applied studies in China of fungal biocontrol agents for use against arthropod pests[J]. Biological Control, 2014, 68(1):129-135. [36] Haroon W M, Christine P, Jean-Michel V. Laboratory and field investigation of a mixture of Metarhizium acridum and neem seed oil against the tree locust Anacridium melanorhodon melanorhodon (Orthoptera:Acrididae)[J]. Biocontrol Science and Technology, 2011, 21(3):353-366. [37] 秦启联, 程清泉, 张继红, 等. 昆虫病毒生物杀虫剂产业化及其展望[J]. 中国生物防治学报, 2012, 28(2):157-164. [38] Streett D A, Woods S A, Erlandson M A. Entomopoxviruses of grasshoppers and locusts:biology and biological control potential[J]. Memoirs of the Entomological Society of Canada, 1997, 129(171):115-130. [39] 黄传贤. 西伯利亚蝗的一种昆虫痘病毒[J]. 植物保护, 1981, 7(5):12. [40] 王丽英. 我国草原蝗虫痘病毒资源调查[J]. 中国农业科学, 1994, 27(4):60-63. [41] Jenkins N E, Goettel M S. Methods for mass-production of microbial control agents of grasshoppers and locusts[J]. Microbial Control of Grasshoppers and Locusts, 1997, 129(171):37-48. [42] Jaeger B, Langridge W H R. Infection of Locusta migratoria, with entomopoxviruses from Arphia conspersa, and Melanoplus sanguinipes,grasshoppers[J]. Journal of Invertebrate Pathology, 1984, 43(3):374-382. [43] Mcguire M R, Streett D A, Shasha B S. Evaluation of starch encapsulation for formulation of grasshopper (Orthoptera:Acrididae) entomopoxviruses[J]. Journal of Economic Entomology, 1991, 84(6):1652-1656. [44] Erlandson M A, Streett D A. Entomopoxviruses associated with grasshoppers and locusts:biochemical characterization[J]. Memoirs of the Entomological Society of Canada, 1997, 129(171):131-146. [45] Afonso C L, Tulman E R, Lu Z. The genome of Melanoplus sanguinipes entomopox virus[J]. Journal of Virology, 1999, 73(1):533-552. [46] Oulebsir-Mohandkaci H, Khemili-Talbi S, Benzina F. Isolation and identification of entomopathogenic bacteria from Algerian desert soil and their effects against the migratory locust, Locusta migratoria (Linnaeus, 1758) (Orthoptera:Acrididae)[J]. Egyptian Journal of Biological Pest Control, 2015, 25(3):739-746. [47] Kaci H O M, Talbi-Khemili S, Gana-Kebbouche S, et al. Antagonistic activity of two Bacillus sp. strains isolated from an Algerian soil towards the migratory locust Locusta migratoria (Linnaeus 1758)[J]. Agriculture and Forestry, 2016, 62(1):145-154. [48] Arif B M. The entomopoxviruses[J]. Advances in Virus Research, 1984, 29:195-213. [49] Greathead D J. Natural enemies of tropical locusts and grasshoppers:their impact and potential as biological control agents[M]//Lomer C J, Prior C, eds. Biological Control of Locusts and Grasshoppers. Wallingford, UK:C.A.B. International, 1992, 105-121. [50] Bensimon A S, Zinger E, Gerasi A, et al. "Dark cheeks," a lethal disease of locusts provoked by a lepidopterous baculovirus[J]. Journal of Invertebrate Pathology, 1987, 50:254-260. [51] Palma L. Vip3C, a novel class of vegetative insecticidal proteins from Bacillus thuringiensis[J]. Applied and Environmental Microbiology, 2012, 78(19):7163-7165. [52] Britschgia A, Spaarb R, Arlettaza R. Impact of grassland farming intensification on the breeding ecology of an indicator insectivorous passerine, the Whinchat Saxicola rubetra:Lessons for overall Alpine meadowland management[J]. Biological Conservation, 2006, 130:193-205. [53] d'Herelle F. Sur une épizootie de natur bactérienne sévissant sur les sauterelles au Mexique[J]. Comptes Rendus de l'Académie des Sciences, 1911, 152:1413-1415. [54] Stevenson J P. Epizootology of a disease of the desert locust, Schistocerca gregaria (Forskäl), caused by nonchromogenic strains of Serratia marcescens Bizio[J]. Journal of Insect Pathology, 1959, 1:232-244. [55] Capinera J L. Population ecology of rangeland grasshoppers[M]//Capinera J L, ed. Integrated Pest Management on Rangeland:A Shortgrass Prairie Perspective. Boulder, CO:Westview Press, 1987, 162-182. [56] 刘世贵袁兴. 一株蝗虫病原菌的分离和鉴定[J]. 微生物学报, 1995, 35(2):86-90. [57] 张文, 杨志荣, 朱文. 类产碱假单胞菌杀虫物质的分离纯化和鉴定[J]. 微生物学报, 1998, 1:57-62. [58] Zhang J, Zhao J, Li D. Cloning of the gene encoding an insecticidal protein in Pseudomonas pseudoalcaligenes[J]. Annals of Microbiology, 2009, 59:45-50. [59] 尹鸿翔, 张杰, 侯若彤. 一株几丁质酶产生菌的分离鉴定及其灭蝗增效作用[J]. 植物保护, 2004, 30(2):37-41. [60] Aronson A I, Beckman W, Dunn P. Bacillus thuringiensis and related insect pathogens[J]. Microbiological Review, 1986, 50:1-24. [61] de Maagd R, Bravo A, Berry A C, et al. Structure, diversity, and evolution of protein toxins from spore-forming entomopathogenic bacteria[J]. Annual Review of Genetic, 2003, 37:409-433. [62] Wei J Z. Bacillus thuringiensis crystal proteins that target nematodes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100:2760-2765. [63] Kotze A C. Toxicity of Bacillus thuringiensis to parasitic and free-living life-stages of nematode parasites of livestock[J]. International Journal of Parasitology, 2005, 35:1013-1022. [64] Bravo A, Soberon M. How to cope with insect resistance to Bt toxins?[J]. Trends of Biotechnology, 2008, 26:573-579. [65] Prior C, Greathead D J. Biological control of locusts:the potential for the exploitation of pathogens[J]. FAO Plant Protection Bulletin, 1989, 37:37-48. [66] Song L, Gao M, Dai S Y. Specific activity of a Bacillus thuringiensis strain against Locusta migratoria manilensis[J]. Journal of Invertebrate Pathology, 2008, 98(2):169-176. [67] Wu Y, Lei C F, Yi D. Novel Bacillus thuringiensis Delta-Endotoxin active against Locusta migratoria manilensis[J]. Applied and Environmental Microbiology, 2011, 77(10):3227-3323. [68] Quesada-Moraga E, Santiago-Alvarez C. Histopathological effects of Bacillus thuringiensis, on the midgut of the Mediterranean locust Dociostaurus maroccanus[J]. Journal of Invertebrate Pathology, 2001, 78(3):183-186. [69] Barakat E M S, Abd-El Aziz M F, El-Monairy O M. Interactions of host plants and Bacillus thuringiensis israelensis injection on the performance and midgut protein profile of Schistocerca gregaria Forskal, adults[J]. Egyptian Journal of Biological Pest Control, 2015, 25(1):205-212. [70] Umbers K D L, Byatt L J, Hill N J, et al. Prevalence and molecular identification of nematode and dipteran parasites in an Australian alpine grasshopper (Kosciuscola tristis)[J]. PLoS ONE, 2015, 10(4):e0121685. [71] Songa J M, Holliday N J. Laboratory studies of predation of grasshopper eggs, Melanoplus bivittatus (Say), by adults of two species of Pterostichus bonelli[J]. Environment, 1985, 12(2):157-163. [72] Smith D I, Lockwood J A. Horizontal and trophic transfer of diflubenzuron and fipronil among grasshoppers (Melanoplus sanguinipes) and between grasshoppers and darkling beetles (Tenebrionidae)[J]. Archives of Environmental Contamination and Toxicology, 2003, 44(3):377-382. [73] Fielding D J, Defoliart L S, Hagerty A M. Effects of carbaryl-bran bait on trap catch and seed predation by ground beetles (Coleoptera:Carabidae)[J]. Journal of Economic Entomology, 2013, 106(2):669-674. [74] Dysart R J. Biological notes on two chloropid flies (Diptera:Chloropidae), predaceous on grasshopper eggs (Orthoptera:Acrididae)[J]. Journal of the Kansas Entomological Society, 1991, 64:225-230. [75] Howe F P. Two new host species for the parasitic blow fly Protocalliphora braueri[J]. Wilson Bulletin, 1991, 103:520-521. [76] Sabrosky C W. A new genus and species of Chloropidae (Diptera) predaceous on grasshopper eggs[J]. Journal of the Kansas Entomological Society, 1991, 64:221-224. [77] 王振平, 严毓骅. 蝗虫天敌可利用性分析及研究进展[J]. 中国草地, 1999, 6:54-58. [78] Prior C, Greathead D J. Biological control of locusts:the potential for the exploitation of pathogens[J]. United Nations Food and Agriculture Organization Plant Protection Bulletin, 1989, 37(1):37-48. [79] Rees N E. Suitability of selected North American grasshopper species as hosts for grasshopper parasites from Pakistan[J]. Agriculture Ecosystems and Environment, 1985, 12(2):157-163. [80] Miura K, Ohsaki N. The cost of autotomy caused by the parasitoid fly Blaesoxipha japonensis, (Diptera:Sarcophagidae):an interspecific comparison between two sympatric grasshopper host species[J]. Ecological Research, 2015, 30(1):33-39. [81] Shima H, Takahashi H. Tetrigimyia minor, a new genus and species of Tachinidae (Diptera) parasitic on Formosatettix larvatus (Orthoptera:Tetrigidae) in Japan[J]. Zootaxa, 2011, 29(21):39-46. [82] Dysart R J. New host records of North American Scelio (Hymenoptera:Scelionidae), parasites on grasshopper eggs (Orthoptera:Acrididae)[J]. Journal of the Kansas Entomological Society, 1995, 68:74-79. [83] Rees N E, Onsager J A. Parasitism and survival among rangeland grasshoppers in response to suppression of robber fly (Diptera:Asilidae) predators[J]. Environmental Entomology, 1985, 14:20-23. [84] Rees N E, Onsager J A. Parasitism and survival among rangeland grasshoppers in response to suppression of robber fly (Diptera:Asilidae) predators[J]. Environmental Entomology, 1985, 14:20-23. [85] Shewell G E. Sarcophagidae[M]//McAlpine J F, ed. Manual of Nearctic Diptera. Lethbridge, CN:Agriculture Canada, Research Branch, Biosystematics Research Center, 1987, 1159-1186. [86] Greathead D J. Natural enemies of tropical locusts and grasshoppers:their impact and potential as biological control agents[M]//Lomer C J, Prior C, eds. Biological Control of Locusts and Grasshoppers. Wallingford, UK:C.A.B. International, 1992, 105-121. [87] Jules A M, Raholijaona G J. Predation capability of black kite (Milvus migrans parasitus) on locust as a biological control option in Madagascar[J]. Open Journal of Ecology, 2016, 6(5):254-263. [88] Basheer P P M, Thomas S K. Indian treepie dendrocitta vagabunda parvula (Latham, 1790) (Passeriformes:Corvidae) as a natural enemy of the pests of coconut and areca palm plantations[J]. Journal of Biopesticides, 2012, 5:205-208. [89] Wilsey C B, Jensen C M, Miller N. Quantifying avian relative abundance and ecosystem service value to identify conservation opportunities in the Midwestern US[J]. Avian Conservation and Ecology, 2016, 11(2):11-16. [90] Lala F, Wagiman F X, Putra N S. The introduction impact of predatory bird Lanius schach Linn. on population of long horn grasshopper Sexava nubila Stal. and leaves damage of coconut[J]. Journal of Agricultural and Biological Science, 2014, 9(2):71-75. [91] Lyons T P, Miller J R, Debinski D M. Predator identity influences the effect of habitat management on nest predation[J]. Ecological Applications, 2015, 25(6):1596-1605. [92] 吴建国, 周多林, 肖宏伟. 粉红椋鸟生物学特性及控制蝗害的研究与示范推广[J]. 新疆畜牧业, 2015, 9:59-61. [93] George T L, McEwen L C. Relationships between bird density, vegetation characteristics, and grasshopper density in mixed grass prairie of western North Dakota[M]//McCullough D R, Barrett R H, eds. Wildlife 2001:Populations. London and New York:Elsevier Publishers, 1992, 465-475. [94] 麦迪·库尔曼, 郭宏. 塔城天然草原养鸡生物治蝗新品种效果试验[J]. 新疆畜牧业, 2015, 4:59-62. [95] Huang X, Wu H, Tu X. Diets structure of a common lizard Eremias argus and their effects on grasshoppers:implications for a potential biological agent[J]. Journal of Asia-Pacific Entomology, 2015, 19(1):133-138. [96] Laws A N, Joern A. Predator-prey interactions are context dependent in a grassland plant-grasshopper-wolf spider food chain[J]. Environmental Entomology, 2001, 44(3):519-528. [97] Wineland S M, Kistner E J, Joern A. Non-Consumptive Interactions between grasshoppers (Orthoptera:Acrididae) and wolf spiders (Lycosidae) produce trophic cascades in an old-field ecosystem[J]. Journal of Orthoptera Research, 2015, 24(1):41-46. [98] Huggans J L, Blickenstaff C C. Parasites and predators of grasshoppers in Missouri[M]. Columbia, MO:University of Missouri and Missouri Agricultural Experiment Station, 1966, 40. [99] Streett D A, McGuire M R. Pathogenic diseases of grasshoppers[M]//Chapman R F, Joern A, eds. Biology of Grasshoppers. New York:John Wiley and Sons, 1990, 483-516. [100] San-Blas E. Progress on entomopathogenic nematology research:A bibliometric study of the last three decades:1980-2010[J]. Biological Control, 2013, 66(2):102-124. [101] 吴文丹, 尹姣, 曹雅忠. 我国昆虫病原线虫的研究与应用现状[J]. 中国生物防治学报, 2014, 30(6):817-822. [102] Rees N E. Arthropod and Nematode Parasites, Parasitoids, and Predators of Acrididae in America North of Mexico[M]. Washington, DC:U.S. Department of Agriculture, Agricultural Research Service, 1973, 288. [103] Terao M, Hirose Y, Shintani Y. Food-availability dependent premature metamorphosis in the bean blister beetle Epicauta gorhami, (Coleoptera:Meloidae), a hypermetamorphic insect that feeds on grasshopper eggs in the larval stage[J]. Entomological Science, 2014, 17(1):85-93. [104] Cardé R T, Willis M A. Navigational strategies used by insects to find distant, wind-borne sources of odor[J]. Journal of Chemical Ecology, 2008, 34(7):854-886. [105] Wajnberg E, Colazza S. Chemical Ecology of Insect Parasitoids[M]. UK:Blackwell Publishing, 2013. [106] Fuzeau-Braesch E, Genin E, Jullien R, et al. Composition and role of volatile substances in atmosphere surrounding two gregarious locusts, Locusta migratoria and Schistocerca gregaria[J]. Journal of Chemical Ecology, 1988, 14:1023-1033. [107] Shi W P. Advanced in research on semiochemicals of grasshopper and locust[J]. Chinese Bulletin of Entomology, 2005, 42(3):244-249. [108] Quesada-Moraga E, Vey A. Bassiacridin, a protein toxic for locusts secreted by the entomopathogenic fungus Beauveria bassiana[J]. Mycological Research, 2004, 108(4):441-452. [109] Cito A, Barzanti G P, Strangi A, et al. Cuticle-degrading proteases and toxins as virulence markers of Beauveria bassiana (Balsamo) Vuillemin[J]. Journal of Basic Microbiology, 2016, 56(9):941-948. [110] Rembold H. Controlling locusts with plant chemicals[M]//Krall H W, Ed. New Trends in Locust Control. Eschborn:TZ-Verlagsgesellschaft Rossdorf, 1994, 41-49. [111] 高书晶, 刘爱萍, 徐林波, 等. 印楝素和阿维·苏云菌对草原蝗虫的防治效果试验[J]. 现代农药, 2010, 9(2):44-46. [112] Sameeh A M, Asmaa Z E, Neama A A. Toxicity of essential plant oils, in comparison with conventional insecticides, against the desert locust, Schistocerca gregaria (Forskål)[J]. Industrial Crops and Products, 2015, 63:92-99. [113] Sun T, Liu X L, Sun G J, et al. Grasshopper plagues control in the Alpine rangeland of the Qilian Mountains, China. A socioeconomic and biological approach[J]. Land Degradation and Development, 2016, 27(7):1763-1770. [114] Thomas M B. Ecological approaches and the development of "truly integrated" pest management[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(11):5944-5951. [115] 陈永林. 中国主要蝗虫及蝗灾的生态学治理[M]. 北京:科学出版社, 2007, 302-326. [116] Alignan J F, Debras J F, Dutoit T. Effects of ecological restoration on Orthoptera assemblages in a Mediterranean steppe rangeland[J]. Journal of Insect Conservation, 2014, 18(6):1073-1085. [117] Geoff M G. Multi-country evidence that crop diversification promotes ecological intensification of agriculture[J]. Nature Plants, 2016, doi:10.1038/nplants. [118] 卢辉, 韩建国, 张泽华. 锡林郭勒典型草原植物多样性和蝗虫种群的关系[J]. 草原与草坪, 2008, 128:21-23. [119] Kenney J J, Detling J K, Reading R P. Influence of black-tailed prairie dogs (Cynomys ludovicianus) on short-horned grasshoppers (Orthoptera:Acrididae) on the shortgrass steppe of Colorado[J]. Journal of arid environments, 2016, 127:93-99. [120] Schmitz O J. Effects of predator hunting mode on grassland ecosystem function[J]. Science, 2008, 319(5865):952-954. [121] Faria M R, Wraight S P. Mycoinsecticides and mycoacaricides:a comprehensive list with worldwide coverage and international classification of formulation types[J]. Biological Control, 2007, 43(3):237-256. [122] Zhao H, Lovett B, Fang W. Genetically engineering entomopathogenic fungi[J]. Advances in Genetics, 2016, 8:94-102. [123] Zhao H, Xu C, Lu H L, et al. Host-to-pathogen gene transfer facilitated infection of insects by a pathogenic fungus[J]. PLoS Pathogens, 2014, 10(4):e1004009. [124] Fang W, Lu H, King G F, et al. Construction of a hypervirulent and specific mycoinsecticide for locust[J]. Scientific Reports, 2014, 4:7345. [125] Peng G, Xia Y. Expression of scorpion toxin LqhIT2 increases the virulence of Metarhizium acridum towards Locusta migratoria manilensis[J]. Journal of Industrial Microbiology and Biotechnology, 2014, 41(11):1659-1666. [126] Peng G, Xia Y. Integration of an insecticidal scorpion toxin (BjαIT) gene into Metarhizium acridum enhances fungal virulence towards Locusta migratoria manilensis[J]. Pest Managment Science, 2015, 71:58-64. [127] Fang W, Vega-Ro dreguez J, Ghosh A K, et al. Development of transgenic fungi that kill human malaria parasites in mosquitoes[J]. Science, 2011, 331:1074-1077. [128] Fang W, Lu H L, King G F, et al. Construction of a Hypervirulent and specific mycoinsecticide for locust control[J]. Scientific Reports, 2014, 4:7345. [129] Wang X, Fang X, Yang P, et al. The locust genome provides insight into swarm formation and long-distance flight[J]. Natural Communication, 2014, 14(5):2957. [130] Williams B A, Slamovits C H, Patron N J, et al. A high frequency of overlapping gene expression in compacted eukaryotic genomes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(31):10936-10941. [131] Gao Q, Jin K, Ying S H, et al. Genome sequencing and comparative transcriptomics of the model entomopathogenic fungi Metarhizium anisopliae and M. acridum[J]. PLoS Genetic, 2011, 7(1):e1001264. [132] Hu X, Xiao G, Zheng P, et al. Trajectory and genomic determinants of fungal-pathogen speciation and host adaptation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(47):16796-16801. [133] Wang J, Xia Y. Construction and preliminary analysis of a normalized cDNA libray from Locusta migratoria manilensis topically infected with Metarhizium anisopliae var. acridum[J]. Journal of Insect Physiology, 2010, 56(8):998-1002. [134] Lü M Y, Mohamed A A, Zhang L W, et al. A family of CS alpha beta defensins and defensin-like peptides from the migratory locust, locusta migratoria, and their expression dynamics during mycosis and nosemosis[J]. PLoS ONE, 2016, 11(8):e0161585. [135] Cook J, Bruckart W L, Coulson J R, et al. Safety of microorganisms intended for pest and plant disease control:A framework for scientific evaluation[J]. Biological Control, 1996, 7(3):333-351. [136] Quesada-Moraga E, Valverde-Garcia P, Maranhao E A A. Safety of entomopathogenic fungi[J]. Bulletin OILB/SROP, 2005, 28(3):195-200. [137] Canning E U. An evaluation of protozoal characteristics in relation to biological control of pests[J]. Parasitology, 1982, 84:119-149. [138] Hopper K R. Assessing and improving the safety of introductions for biological control, OECD workshop on sustainable pest management safe utilization of new organisms in biological control, Montreal, Canada[J]. Phytoprotection, 1998, 79(S):84-93. [139] 李增智. 我国利用真菌防治害虫的历史、进展和现状[J]. 中国生物防治学报, 2015, 31(5):699-711. [140] Lomer C J, Bateman, R P, Johnson D L, et al. Biological control of locusts and grasshoppers[J]. Annual Review of Entomology, 2001, 46:667-702. |
[1] | YANG Lei, LI Fen, WU Shaoying. A Review of the Parasitoid Wasps of the Fall Armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae) and Their Regulations on Host Immune Responses [J]. Chinese Journal Of Biological Control, 2020, 36(4): 496-506. |
[2] | LUO Mei, LUO Yulin, CHEN Mobing, SHU Yongxin, CHEN Xinyu, DONG Zhangyong. Isolation and Identification Trichoderma koningiopsis Tk1, and Its Antagonistic Effect and Biological Characteristics [J]. Chinese Journal Of Biological Control, 2020, 36(4): 581-586. |
[3] | HAN Guangjie, XU Linghuan, LI Chuanming, LIU Qin, PENG Qi, XU Bin, SONG Fuping, XU Jian. Characteristics of Cry and Cyt Proteins and Insecticidal Activity in Bacillus thuringiensis Bt-59 [J]. Chinese Journal Of Biological Control, 2020, 36(3): 458-464. |
[4] | ZHOU Hu, HU Ling, YU Xiyue, ZHU Huajun, REN Zuohua, LIU Erming. Physical and Chemical Properties and Inhibitory Effect of Crude Antifungal Protein Produced by Bacillus tequilensis JN-369 [J]. Chinese Journal Of Biological Control, 2020, 36(2): 211-219. |
[5] | SUN Wangwang, YAN Li, CHEN Changlong, TIAN Yu, LI Xiaoying, CHEN Jie, XIE Hua. Identification and Biocontrol Effect of Antagonistic Bacterium Bacillus velezensis BPC6 against Soft Rot and Sclerotinia Rot Diseases on Lettuce [J]. Chinese Journal Of Biological Control, 2020, 36(2): 231-240. |
[6] | YANG Zhi, LU Yang, MAO Gang, ZHAO Yu, ZHANG Qinghe, SUI Li, ZHAO Yu, LI Qiyun, ZHANG Zhengkun. Use of Trichogramma Phoretic Beauveria bassiana in Control of Asian Corn Borer in Field [J]. Chinese Journal Of Biological Control, 2020, 36(1): 52-57. |
[7] | QIAN Huimin, ZHAO Hui, LIU Xintao, NI Yunxia, QIU Rui, LI Xiaojie, ZHAO Xinbei, LI Shujun, LIU Hongyan, WEN Yi. Studies on Antibacterial and Plant-Growth-Promoting Characterization in Biocontrol Bacterial Strains PA2101 and PG3402 [J]. Chinese Journal Of Biological Control, 2020, 36(1): 135-144. |
[8] | QIAN Huimin, WEN Yi, ZHAO Hui, NI Yunxia, LIU Xintao, QIU Rui, LI Xiaojie, ZHAO Xinbei, LI Shujun, LIU Hongyan. Screening and Identification of Pseudomonas against Tobacco Black Shank and Tobacco Root Black Rot [J]. Chinese Journal Of Biological Control, 2019, 35(6): 940-948. |
[9] | YUAN Yuan, ZHANG Hong, SU Daolahu, ZHENG Rong, SHI Lingling, WU Huiling. Biocontrol Effect of Streptomyces sp. S-101 against Cucumber Wilt [J]. Chinese Journal Of Biological Control, 2019, 35(5): 813-820. |
[10] | WANG Xing, YANG Jun, CAO Weihua, WEI Lanfang, JI Guanghai. Screening of Biocontrol Bacteria on Rice Bacteria Leaf Streak and Determination of Field Control Efficacy [J]. Chinese Journal Of Biological Control, 2019, 35(4): 648-654. |
[11] | SHI Wangpeng, TAN Shuqian. Bibliometric Analysis on Literature on Biological Control of Grasshopper and Locust [J]. journal1, 2019, 35(3): 325-334. |
[12] | ZHAO Dailin, TAO Gang, MAO Tingting, WANG Nian, ZHAO Xingli, LOU Xuan, SUN Manhong, LI Shidong. Effects of Microbial Biocontrol Agents on Several Important Fungal Diseases of Strawberry [J]. journal1, 2019, 35(3): 456-462. |
[13] | QIN Ke, SANG Weijun, CHEN Xiaoyulong, LI Haoxi, YANG Maofa. Genome Sequencing and Identification of Chitinase Family Genes of Streptomyces sp. FT05W, an Antagonist of Tobacco Pathogens [J]. journal1, 2019, 35(3): 463-473. |
[14] | ZHAO Xinbei, WANG Juan, SHANGGUAN Nini, LIU Hongyan, MA Qing. Identification, Fermentation Condition Optimization and Control Efficiency of Biocontrol Bacterium TD-7 against the Tomato Grey Mould [J]. journal1, 2019, 35(2): 226-239. |
[15] | WANG Kai, LI Pufang, YU Rui, WANG Yue, MA Yongqing. Control Effect of Crop Rotation Regime on Orobanche spp. in Yanqi Agricultural Areas of Xinjiang Uygur Autonomous Region of China [J]. journal1, 2019, 35(2): 272-281. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||