[1] Talekar N S, Shelton A M. Biology, ecology, and management of the diamondback moth[J]. Annual Review of Entomology, 1993, 38: 275-301. [2] Furlong M J, Wright D J, Dosdall L M. Diamondback moth ecology and management: problems, progress, and prospects[J]. Annual Review of Entomology, 2013, 58: 517-541. [3] Zalucki M P, Shabbir A, Silva R, et al. Estimating the economic cost of one of the world’s major insect pests, Plutella xylostella (Lepidoptera: Plutellidae): just how long is a piece of string?[J]. Joural of Economic Entomology, 2012, 105: 1115-1129. [4] 李振宇, 肖勇, 吴青君, 等. 小菜蛾种群灾变及抗药性治理研究进展[J]. 应用昆虫学报, 2020, 57(3): 549-567. [5] Schnepf E, Crickmore N, Van Rie J, et al. Bacillus thuringiensis and its pesticidal crystal proteins[J]. Microbiology and Molecular Biology Reviews, 1998, 62(3): 775-806. [6] Sanahuja G, Banakar R, Twyma R M, et al. Bacillus thuringiensis: a century of research, development and commercial applications[J]. Plant Biotechnol Journal, 2011, 9: 283-300. [7] Tabashnik B E, Cushing N L, Finson N, et al. Field development of resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera: Plutellidae)[J]. Journal of Economic Entomology, 1990, 83(5): 1671-1676. [8] 戴承镛, 殷向东, 徐熙, 等. 小菜蛾对苏云金杆菌制剂的抗药性及其对策[J]. 生物防治通报, 1994, 10(2): 62-66. [9] Pardo-Lopez L, Sober M, Bravo A. Bacillus thuringiensis insecticidal three-domain Cry toxins: mode of action, insect resistance and consequences for crop protection[J]. FEMS Microbiology Reviews, 2013, 37(1): 3-22. [10] 王崇利, 武淑文, 杨亦桦, 等. 东南沿海地区小菜蛾对Bt δ-内毒素和Bt制剂的抗性检测[J]. 昆虫学报, 2006, 49(1): 70-73. [11] Wafa J, Fatma D, Luc F, et al. Review on biopesticide production by Bacillus thuringiensis subsp. kurstaki since 1990: Focus on bioprocess parameters[J]. Process Biochemistry, 2020, 98: 224-232. [12] Cao J, Shelton A M, Earle E D. Development oftransgenic collards (Brassica oleracea L., var. acephala) expressing a cry1Ac or cry1C Bt gene for control of the diamondback moth[J]. Crop Protection, 2005, 24: 804-814. [13] 朱勋. 抗Cry1Ac杀虫晶体蛋白近等基因系小菜蛾中肠蛋白质基因组学研究[D]. 武汉: 华中农业大学, 2014. [14] Tabashnik B E, Cushing N L, Finson N, et al. Field development of resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera: Plutellidae)[J]. Journal of Economic Entomology, 1990, 83(5): 1671-1676. [15] Halpin C. Gene stacking in transgenic plants–the challenge for 21st century plant biotechology[J]. Plant Biotechnology Journal, 2005, 3: 141-155. [16] Peterson B, Bezuidenhout C C, Van den Berg J. An overview of mechanisms of cry toxin resistance in lepidopteran insects[J]. Journal of Economic Entomology, 2017, 110(2): 362-377. [17] Guo Z J, Kang S, Zhu X, et al. The midgut cadherin-like gene is not associated with resistance to Bacillus thuringiensis toxin Cry1Ac in Plutella xylostella (L.)[J]. Journal Invertebrate Pathology, 2015, 126: 21-30. [18] 赵建国, 李亚新. 害虫对苏云金杆菌(Bt)制剂的抗药性及其治理策略[J]. 农药科学与管理, 1993(2): 16-18. [19] Cao J, Shelton A M, Earle E D. Sequential transformation to pyramid two Bt genes in vegetable Indian mustard (Brassica juncea L.) and its potential for control of diamondback moth larvae[J]. Plant Cell Reports, 2008, 27: 479-487. |