[1] 保万魁, 王旭, 封朝晖, 等. 海藻提取物在农业生产中的应用[J]. 中国土壤与肥料, 2008, 217(5):12-18. [2] 王盟星, 朱红薇, 张琳, 等. 海藻渣改良栽培料对平菇多糖产量影响的研究[J]. 生物化工, 2020, 6(2):60-62, 69. [3] Battacharyya D, Babgohari M Z, Rathor P, et al. Seaweed extracts as biostimulants in horticulture[J]. Scientia Horticulturae, 2015, 196:39-48. [4] 甘纯玑, 谢苗, 钟剑霞, 等. 褐藻渣的开发利用[J]. 中国食物与营养, 2001(3):18-20. [5] 李悦, 张淑平, 胡晓健, 等. 海藻废渣有机肥肥效的研究[J]. 应用化工, 2012, 41(3):381-383, 388. [6] 方金, 王斌, 郭世荣, 等. 黄瓜育苗海藻渣基质配方研究[J]. 沈阳农业大学学报, 2013, 44(5):622-627. [7] 黄振瑞, 陈迪文, 李集勤, 等. 海藻渣与镁配施对红壤理化性质和烟草生长的影响[J]. 热带作物学报, 2020, 41(9):1797-1802. [8] 王泽文. 海藻植物生长调节剂的检测及促生长作用研究[D]. 青岛:中国海洋大学, 2010. [9] 沈虹, 王磊, 苗艳, 等. 海藻渣对菠菜生长和品质的影响[J]. 江苏农业科学, 2016, 44(10):196-200. [10] 江杰. 海带残渣有机肥的制备及其效果评价[D]. 南京:南京农业大学, 2016. [11] 朱梦霞, 高颖, 陈寅瑞, 等. 利用海藻渣栽培食用菌的研究[J]. 现代食品, 2019, 22(3):72-75, 86. [12] 陈捷. 木霉菌生物学与应用研究——回顾与展望[J]. 菌物学报, 2014, 33(6):1129-1135. [13] 陈捷, 朱洁伟, 张婷, 等. 木霉菌生物防治作用机理与应用研究进展[J]. 中国生物防治学报, 2011, 27(2):145-151. [14] 季倩茹, 陈静, 胡远亮, 等. 3种芽孢杆菌菌剂对黄瓜枯萎病的防效及其作用机制初探[J]. 华中农业大学学报, 2020, 39(5):101-107. [15] 朱森林, 王丹媚, 唐秀梅, 等. 木霉水分散粒剂的培养条件优化及其对黄瓜枯萎病的防治效果[J]. 浙江农业学报, 2020, 32(6):1009-1018. [16] 廉华, 马光恕, 靳亚忠, 等. 木霉分生孢子和厚垣孢子对黄瓜叶片抗氧化系统及枯萎病防效的影响[J]. 干旱地区农业研究, 2021, 39(4):71-79. [17] Latha P, Anand T, Prakasam V, et al. Combining Pseudomonas, Bacillus and Trichoderma strains with organic amendments and micronutrient to enhance suppression of collar and root rot disease in physic nut[J]. Applied Soil Ecology, 2011, 49:215-223. [18] Zaim S, Bekkar A A, Belabid L. Efficacy of Bacillus Subtilis and Trichoderma Harzianum combination on chickpea Fusarium wilt caused by F. oxysporum f. sp. ciceris[J]. Archives of Phytopathology and Plant Protection, 2018, 51(3):217-226. [19] Ilham B, Noureddine C, Philippe G, et al. Induced systemic resistance in arabidopsis thaliana by Bacillus amyloliquefaciens and Trichoderma harzianum used as seed treatments[J]. Agriculture-basel, 2019, 9(8):166. [20] 苏东海. 复合菌发酵海藻渣制备海藻饲料的工艺研究[D]. 青岛:青岛大学, 2017. [21] 赵祥忠. 微生物发酵技术在制备海带渣饲料中的应用研究[D]. 济南:山东轻工业学院, 2012. [22] 周莹, 袁孟娟, 韩军, 等. 丹参根腐病生防芽孢杆菌2-1海藻菌剂的研制[J]. 生物技术通报, 2015, 31(1):167-172. [23] 方中达. 植病研究方法[M]. 北京:中国农业出版社, 1998. [24] 宗兆锋, 康振生. 植物病理学原理[M]. 北京:中国农业出版社, 2002. [25] Stockwell V O, Johnson K B, Sugar D, et al. Mechanistically compatible mixtures of bacterial antagonists improve biological control of fire blight of pear[J]. Phytopathology, 2011, 101(1):113-123. [26] Hashem A, Tabassum B, Abd allah E F. Bacillus subtilis:a plant-growth promoting rhizobacterium that also impacts biotic stress[J]. Saudi Journal of Biological Sciences, 2019, 26(6):1291-1297. [27] Song Y, Chen D, Lu K, et al. Enhanced tomato disease resistance primed by arbuscular mycorrhizal fungus[J]. Frontiers in Plant Science, 2015, 6, https://doi.org/10.3389/fpls.2015.00786. [28] Li C, Hu W, Pan B, et al. Rhizobacterium Bacillus amyloliquefaciens strain SQRT3-Mediated induced systemic resistance controls bacterial wilt of tomato[J]. Pedosphere, 2017, 27(6):1135-1146. [29] Zhang F, Liu C, Wang Y, et al. Biological characteristic and biocontrol mechanism of Trichoderma harzianumt-a66 against bitter gourd wilt caused by Fusarium oxysporum[J]. Journal of Plant Pathology, 2020, 102(4):1107-1120. [30] Kloepper J, Ryu C, Zhang S. Induced systemic resistance and promotion of plant growth by Bacillus spp.[J]. Phytopathology, 2004, 94(11):1259-1266. [31] Shukla P S, Borza T, Critchley A T, et al. Seaweed-based compounds and products for sustainable protection against plant pathogens[J]. Marine Drugs, 2021, 19(2):59. [32] 柴庆凯, 张斌, 常若葵, 等. 解淀粉芽孢杆菌LJ02对黄瓜抗灰霉病菌的生防效果及其诱导抗性机理的初步研究[J]. 植物病理学报, 2019, 49(6):828-835. [33] Jogaiah S, Abdelrahman M, Tran L P, et al. Different mechanisms of Trichoderma virens-mediated resistance in tomato against Fusarium wilt involve the jasmonic and salicylic acid pathways[J]. Molecular Plant Pathology, 2018, 19(4):870-882. |